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1 Introduction

The past year has seen incredible progress in the study of F-theory realizations of super-

symmetric GUTs [1–4]. Much of this work has proceeded in the general spirit of bottom-up

phenomenology, focusing on the study of local models based on noncompact Calabi-Yau

four-folds. This has enabled a number of phenomenological issues to be addressed, including

supersymmetry-breaking [5, 6] and gauge mediation [7, 8], as well as flavor structure [9–

12] and models of neutrino physics [13, 14]. Quite nicely, the models that emerge most

naturally in local F-theory constructions, such as [7] and [8], give rise to effective field

theories which exhibit several characteristic features, including a large messenger scale and

a relatively heavy gravitino [8, 15]. Studies of the relevant gravitino cosmology include [16]

and [17], while collider signatures of these models have been investigated in [15] and [18].

Other recent work on F-theory model building includes [19–23].

One expects, however, that combining local phenomenological requirements with the

global consistency conditions needed to embed them into full F-theory compactifications

provides a highly constrained setup. While local models help to identify specific geomet-

ric structures that are desirable for model building, actually realizing such structures, if

– 1 –
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possible at all, will likely require significant tuning. Recently, some general properties of

F-theory compactifications that give rise to SU(5) GUT models have been described in [24].

Further, a rigorous approach to building local models that incorporates many of the con-

straints needed to compactify them has recently been developed in [25]. The techniques

described therein rely heavily on input from heterotic models, though the work of [11, 25]

demonstrates that they can be applied more generally to F-theory compactifications that

do not admit heterotic duals. This is important because the most successful mechanism for

breaking the GUT gauge group is absent in models with a dual heterotic description. Some

aspects of the heterotic/F-theory duality map that helped elucidate important structures

in F-theory have been discussed recently in [11, 26].

Despite the ability to engineer GUTs based on SO(10) or E6 gauge groups in F-theory,

problems with charged exotics have led to a particular emphasis on SU(5) models [3, 4].

Theories of this type can be engineered directly in the orientifold limit of F-theory. Indeed,

compact type IIB orientifold models for SU(5) GUTs that implement the same GUT-

breaking mechanism as their F-theory counterparts have been constructed in the past

year [27]. What motivates us to consider F-theory compactifications, however, is rather

the favorable flavor structure that emerges [10]. Type IIB models such as those of [27]

require nonperturbative effects to generate the up-type Yukawa couplings, suggesting that

an intrinsically nonperturbative framework may be more appropriate. F-theory models, on

the other hand, treat up- and down-type Yukawa couplings on an equal footing and can

lead to natural hierarchies for both [10].

In this paper, we construct F-theory compactifications that engineer supersymmetric

GUTs and work towards the further realization of as many of the desirable phenomeno-

logical features of local models as possible. The most important properties that should be

realized are an SU(5) gauge group along with a mechanism for breaking this group down to

the MSSM gauge group SU(3)× SU(2)×U(1)Y . The SU(5) gauge bosons are localized on

a four-cycle, SGUT, of the compact geometry that corresponds to an I5 = SU(5) singular

locus of the elliptic fibration.1 A simple mechanism for breaking the GUT gauge group, is

the introduction of a nontrivial hypercharge flux along SGUT [3, 4]. If SGUT is a del Pezzo

surface, the bundle cohomologies that determine the zero mode structure exhibit a number

of vanishing theorems that facilitate the lifting of charged exotics [3]. An internal flux

will generically give a mass to the hypercharge gauge boson, though, unless an important

topological constraint, that we discuss in detail, is satisfied [3, 4, 28].

Our first goal in the current work is the construction of a simple three-fold, X3, that can

serve as the base of elliptically fibered Calabi-Yau four-folds for F-theory compactifications

that realize this mechanism of GUT-breaking. Furthermore, there should exist a limit

in which GUT and Planck scale physics decouple, which is ensured if the surface SGUT

is contractible [3]. In particular, we construct a three-fold that exhibits the following

three properties2

1Throughout this paper, we will use ADE groups to label such singularities rather than the Kodaira

notation.
2In section 4.4 we construct an example of X3 with non-contractible SGUT = dP2. However, we show

that the volume of X3 can be much greater than the volume of SGUT which allows for mass hierarchy

– 2 –
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• X3 is almost Fano, i.e. K−1
X3

is ample

• X3 contains a contractible del Pezzo divisor that serves as SGUT

• With this choice of SGUT, X3 satisfies the topological constraint that ensures a mass-

less U(1)Y gauge boson

We focus in this paper on a particular X3 but the method that we use to construct it can

be applied more generally than we do here. The specific construction that we consider is

a blow-up of a nodal curve, which appears in Mori’s classification of almost Fano three-

folds [29] (see also [30], as well as [28] in the context of Calabi-Yau three-folds), followed by

a flop transition. The resulting geometry can be described purely algebraically and does

not seem to have a toric realization.

Once we have our three-fold X3, we next turn to the study of generic elliptic fibrations

that exhibit an SU(5) singularity along the del Pezzo surface, SGUT. Charged matter in

these models is localized on various matter curves inside SGUT whose structure and in-

tersections are easy to determine from the topological data of X3 [24]. The matter curve

on which fields transforming in the 10 of SU(5) are localized is fairly simple and has the

topology of a P
1. Matter in the 5, however, localizes on a much more complicated matter

curve that is of significantly higher genus in general. In addition to studying the matter

curves, we show that these compactifications satisfy all of the requisite global consistency

constraints and demonstrate, using the techniques of [25], that a suitable tuning permits

us to turn on enough (globally well-defined) G-fluxes to obtain three chiral generations of

MSSM matter fields. We therefore obtain a fairly large family of honest F-theory compact-

ifications that realize three-generation SU(5) GUTs.

Favorable phenomenology, however, requires much more structure. Local models typi-

cally exhibit a very precise and intricate pattern of matter curves and intersections in order

to engineer realistic effective field theories. In this paper, we work towards the realization

of two specific successes of local models, namely the extension of the proton lifetime and

the realization of natural hierarchies in the up- and down-type Yukawa matrices. Imple-

menting these features requires two steps. First, one must impose a number of geometric

constraints which amount to requiring the 5 matter curve to factorize into a number of

components with specific intersection properties. This will provide us with candidate com-

ponents on which to engineer the Higgs doublets, Hu and Hd, and the 5 matter fields.

To complete the model, however, one must move to the second step. That is, one must

demonstrate that it is possible to turn on suitable G-fluxes that not only give rise to 3

chiral generations but also causes them to localize on the “correct” components of Σ5. In

this paper, we address only the first step and demonstrate that candidate four-folds with

the right geometric properties are not hard to explicitly construct. We will return to the

second issue in future work. Eventually, it will be important to address issues related to

moduli stabilization as well. We do not address this issue in the present work.

The outline of our paper is as follows. We begin in section 2 by reviewing the basic

properties of SU(5) GUTs and the properties that four-folds must exhibit in order to repro-

MGUT ≪ Mpl.
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duce various phenomenological successes of local models. In section 3 we discuss important

global consistency constraints, including tadpole cancellation and G-flux quantization con-

ditions. We then turn to the main constructions of the paper in section 4, where we obtain

a almost Fano three-fold X̃ that will serve as the base for our elliptic fibrations. In sec-

tion 5 we study generic elliptic fibrations over X̃ that yield SU(5) GUTs and demonstrate,

among other things, that under a suitable tuning it is possible to obtain three-generation

models. We then describe how to implement geometric refinements that incorporate some

crucial features of local models in section 6. Various details of the geometries are discussed

in the appendices.

Note added. While this paper was in preparation the preprint [25] by R. Donagi and

M. Wijnholt appeared, which also discusses issues related to compact models in F-theory.

After [25] appeared, we applied their techniques for studying G-fluxes to obtain the results

of subsection 5.3.

2 Input from local models

Recent studies of local models in F-theory have demonstrated that it is possible to realize a

number of phenomenologically desirable features [3, 4, 7–10, 13, 14]. This includes not only

the presence of a suitable GUT gauge group and MSSM matter content but also a viable

method of GUT-breaking [3, 4], a mechanism for achieving doublet-triplet splitting without

violating current constraints from proton decay experiments [3], and natural hierarchies in

the Yukawa matrices [10, 13, 14]. Because we would like to build compactifications that

are as realistic as possible, we review in this section the basic structures of local models in

F-theory that give rise to these features.

2.1 GUT breaking and hypercharge flux

In F-theory models, the GUT gauge group is realized on a stack of 7-branes that wraps

a four-cycle, SGUT, in the compactification geometry. A promising technique for breaking

the GUT group is the introduction of internal U(1) fluxes. Suitably chosen, these fluxes

can break the GUT group down to that of the MSSM while lifting some of the charged

exotics that descend from the 8-dimensional adjoint vector multiplet.

Most of the recent literature has focused on models in which the internal four-cycle

wrapped by the GUT 7-branes is a del Pezzo surface dPn, i.e. a surface obtained by blowing

up n points on P
2, n = 1, · · · , 8. This was originally motivated by the desire to build models

in which Planck scale physics could in principle be decoupled from that of the GUT [3].

Apart from this, however, del Pezzo’s are promising for model building due to the fact

that their bundle cohomologies exhibit a number of vanishing theorems [2]. In many cases,

index formulae can be used to compute the precise spectrum of zero modes rather than net

chiralities. The vanishing of many cohomology groups also makes it easier to lift charged

exotics after GUT breaking.

Nevertheless, it has been explicitly demonstrated that charged exotics cannot be com-

pletely removed by internal fluxes in SO(10) models and this likely extends to higher rank

– 4 –
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groups as well. While one can try to engineer models that utilize additional mechanisms to

remove exotics, these difficulties seem to single out SU(5) models, where exotic-free spectra

can be obtained [3].

We will therefore focus on SU(5) GUTs that utilize a nontrivial internal hypercharge

flux, FY , to break the gauge group down to SU(3) × SU(2) × U(1)Y . Such a flux also

projects out all light charged exotics that descend from the SU(5) adjoint provided that

its dual 2-cycle inside SGUT is the difference of two exceptional classes of the del Pezzo3

[FY ] = ẽi − ẽj . (2.1)

It is important to note, however, that this flux will generate a mass for the 4-dimensional

hypercharge gauge boson unless the 2-cycles ẽi and ẽj are homologous to one another inside

of the base X3 of the elliptic fibration. This is the only topological requirement we are

aware of that both follows directly from phenomenological concerns in the local model and

cannot be addressed in a local context.

In summary, the local input so far is as follows:

1. SU(5) gauge group from 5 D7-branes wrapping a four-cycle SGUT

2. SGUT is a del Pezzo surface, dPn

3. At least two of the exceptional classes inside SGUT = dPn are homologous in the

full geometry

2.2 Matter content and flavor structure

Since charged fields that descend from the SU(5) adjoint are projected out by the hyper-

charge flux, the matter multiplets in F-theory GUTs arise from the intersection of the

GUT branes with additional 7-branes. In geometric language, this corresponds to complex

codimension 1 surfaces inside SGUT along which the singularity type of the elliptic fiber is

enhanced in rank. Charged fields in the 5 or 5 arise when the enhancement is to SU(6)

while one obtains 10’s or 10’s when the enhancement is to SO(10). The number of charged

fields that one obtains along a given surface Σ ⊂ SGUT is determined by bundle cohomol-

ogy. Important to note here is that one obtains a purely chiral spectrum whenever Σ = P
1,

with the number of zero modes determined by the net gauge flux along Σ.

Hypercharge flux FY differentiates among the various components of any GUT multi-

plet so a matter curve Σ to which FY restricts nontrivially will in general yield different

numbers of each. It is therefore natural to engineer the usual MSSM matter content,

namely 3 10’s and 3 5’s, on matter curves to which FY restricts trivially

FY |Σ10,M
= FY |Σ

5̄,M
= 0 . (2.2)

On the other hand, we should engineer the 5 and 5 from which the Higgs fields descend on

matter curves where FY restricts nontrivially. In this case, a suitable choice of gauge flux

3Throughout the paper, the generators of H2(dPn, Z) will be denoted by h̃ (hyperplane class) and ẽi

(exceptional classes), with non-trivial intersections h̃2 = 1 and ẽi · ẽj = −δij .

– 5 –
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on the matter branes can project out the Higgs triplets, leaving us with a single pair of

doublets, Hu and Hd. When Hu and Hd originate on different matter curves, this provides

a realization of the missing partner mechanism, hence evading current constraints from

proton decay experiments.

Yukawa couplings originate from isolated points where three matter curves come to-

gether inside SGUT. Upon dimensional reduction, the couplings of light 4d fields are given

at leading order by the product of their internal wave functions at the common point.

Because of this, the matrix of Yukawas from that originates from such a point has rank

one at leading order so that it exhibits a single large eigenvalue [3]. Further, subleading

corrections generate a natural hierarchical structure of the rough sort that is needed in the

MSSM [10, 13, 14].

If the same Yukawa coupling gets contributions from several such points, though, this

nice structure can become distorted. This is because these contributions typically cannot

be simultaneously diagonalized at leading order. For this reason, local models with nice

hierarchies obtain the full matrix of 10 × 5 × 5 from a single, unique point where the

corresponding matter curves intersect. Similarly, one needs to obtain the full matrix of 10×

10× 5 from a single, unique point. In the end, one generates the superpotential couplings

WSU(5) ⊃ λbottom10M × 5M × 5H̄ + λtop10M × 10M × 5H . (2.3)

To achieve this, it is necessary to obtain all three generations of the 10 (5) from a single

matter curve, denoted Σ10M
(Σ

5M
). Both Yukawa couplings will be generated on the same

footing, from points of enhanced symmetry, namely SO(12) for λbottom and E6 for λtop.

To obtain realistic matter content and hierarchical Yukawas, we thus require

1. 3 × 5’s from a single matter curve, Σ
5M

, with FY |Σ
5M

= 0

2. 3 × 10’s from a single matter curve, Σ10M
, with FY |Σ10M

= 0

3. One doublet Hu of 5H from a single matter curve, Σ5H
, with FY |Σ5H

6= 0

4. One doublet Hd of 5H̄ from a single matter curve, Σ
5H

, with FY |Σ
5H

6= 0

5. A unique E6 enhancement point where Σ5M
∩ Σ10M

6. A unique SO(12) enhancement point where Σ10M
∩ Σ

5M
∩ Σ

5H

Equipped with these phenomenological requirements we now turn to discuss the global

consistency constraints for F-theory compactifications.

3 Building compact models

We now turn to our basic strategy for building compact F-theory GUTs and a review of

the various global constraints that they must satisfy.

– 6 –
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3.1 Elliptically fibered Calabi-Yaus

To specify an F-theory compactification, we must construct an elliptically fibered Calabi-

Yau (CY) four-fold Y4 with base X3 and describe the various G-fluxes on that four-fold.

In this subsection, we will focus on Y4.

The main result of our work is the construction of a base three-fold X3, which we will

explain in section 4. This three-fold is by construction almost Fano, i.e.4

K−1
X3

is almost ample , (3.1)

and one can follow standard procedures to construct an elliptically fibered CY four-fold

with X3 as base. Recall that an ample line bundle L is one for which some power Ln is

very ample, which means that it has enough sections to construct a projective embedding

of its base.

We now review the structure of local Calabi-Yau four-folds for SU(5) GUTs [24]. There,

the four-fold is described as a local ALE fibration over a four-cycle, SGUT, over which

the fiber degenerates to an SU(5) singularity. This is typically expressed in terms of a

Weierstrass equation

x2 = y3 + fy + g , (3.2)

where f and g are sections of suitable bundles over SGUT. In order for this to describe a

local Calabi-Yau geometry, f must be a section of
(

K−1
SGUT

⊗NSGUT/X3

)4
and g a section

of
(

K−1
SGUT

⊗NSGUT/X3

)6
. To construct f and g with the right singularity structure, we

identify a local coordinate z normal to SGUT and write f and g in a series expansion

f =
1

24 · 3

∑

m

fmz
m , g =

1

25 · 33

∑

n

gnz
n , (3.3)

with fm and gn sections of the appropriate bundles. In general, one can construct sections f

and g with the desired structure by simply specifying suitable nonzero coefficient sections

in this series. For instance, to obtain an SU(5) singularity along SGUT with rank one

enhancements to SO(10) and SU(6), one must choose [24]

f0 = −h4

f1 = 2h2H

f2 = 2hq −H2

g0 = h6

g1 = −3h4H

g2 = 3h2(H2 − hq)

g3 =
3

2
h(2Hq − hf3) −H3

g4 =
3

2
(f3H + q2) .

(3.4)

4Almost ample requires that (−KX · C) ≥ 0.

– 7 –
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For simplicity, we will assume fm = gn = 0 for m > 3 and n > 5. The structure of matter

curves can now be obtained from the discriminant

∆ ∼ z5(h4P + h2[−2HP + hQ]z + [−3q2H3 +O(h)]z2 +O(z3)) (3.5)

with
P = −3Hq2 − 3hf3q + 2g5h

2

Q = −q3 − h

(

3

4
f2
3 + 2g5H

)

.
(3.6)

Using the Kodaira classification, it is now easy to verify that rank one singularity enhance-

ments arise as follows
(h = 0) ⇒ SO(10)

(P = 0) ⇒ SU(6) .
(3.7)

Furthermore, we have the following rank two enhancements

(h = H = 0) ⇒ E6

(h = q = 0) ⇒ SO(12)

(P = Q = 0) ⇒ SU(7) .

(3.8)

These are precisely the loci where the Yukawa couplings are generated.

We can obtain an intuitive understanding for these singularity enhancements by per-

forming a simple change of variables to the so-called Tate form [31]. Implicitly defining

new sections X and Y as

x = X +
1

12
(h2 −Hz)

y = Y −
hX

2
−
qz2

24

(3.9)

our fibration takes the form

Y 2 = X3 + b5XY + b4X
2z + b3Y z

2 + b2Xz
3 + b0z

5 , (3.10)

where
b5 = h

b4 = −
1

4
H

b3 =
1

12
q

b2 =
1

48
f3

b0 =
1

25 · 33
g5 .

(3.11)

This is nothing other than an E8 singularity unfolded to SU(5). The geometry of this

situation is nicely described in [4, 25] and we briefly review it here. An E8 singularity has

8 collapsed P
1’s whose intersection matrix is −1 times the Cartan matrix of E8. As such,

– 8 –
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α α α

α

αα

α

SU(5)

α α 6 7

5

8

4321−θ

Figure 1. Extended E8 Dynkin diagram.

we can naturally identify them with nodes of the extended E8 Dynkin diagram, which we

reproduce in figure 1.

To unfold this to SU(5), the P
1’s corresponding to α1, α2, α3, and α4 are resolved to

nonzero volume. Note also that the P
1 corresponding to the additional node α−θ of the

extended diagram,

α−θ = −2α1 − 3α2 − 4α3 − 5α4 − 6α5 − 4α6 − 2α7 − 3α8 , (3.12)

is also resolved here. These P
1’s are mixed under the subgroup WA4

of the Weyl group of

E8 which leaves α5, α6, α7, α8 fixed.

An enhancement to SO(10) occurs when α4 or any of its images under WA4
shrinks to

zero size. There are five such P1’s, which we denote as

λ1 = α4

λ2 = α3 + α4

λ3 = α2 + α3 + α4

λ4 = α1 + α2 + α3 + α4

λ5 = α−θ + α1 + α2 + α3 + α4 .

(3.13)

In the following, we will abuse notation and use λi to denote both a particular P
1 as well

as its volume. As described in [4, 25], the volumes λi are encoded in the coefficients bn as

bn = b0sn(λi) , (3.14)

where the sn(λi) are Schur polynomials. Since an SO(10) singularity occurs whenever any

one of these P
1’s shrinks to zero size, we see that the SO(10) singular locus corresponds

to solutions to b5 ∼ h = 0, as we expected. On the other hand, an SU(6) singularity

occurs when λi + λj → 0 for some i 6= j. In terms of the bn, this condition amounts to

0 = b23b4 − b2b3b5 + b0b
2
5 = 1728P = 0.

Given a compact three-fold X3 containing SGUT, it is trivial to uplift this general

structure to an elliptic fibration over X3. We start again with the Weierstrass equation (3.2)

but now with f and g suitable sections on X3. To obtain a four-fold that is Calabi-Yau, f

must be a section of K−4
X3

and g a section ofK−6
X3

. To construct f and g, we identify a section

z of the bundle O(SGUT) and specify f and g as an expansion in z of the form (3.3),(3.4).

– 9 –
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The bundles of which z, h,H, q, f3, g5 must be sections in order to define a local or global

model are trivially related by adjunction KSGUT
= KX3

|SGUT
⊗ NSGUT/X3

. For ease of

reference, we list them in the table below

Section Bundle for Local Model Bundle for Global Model

z NSGUT/X3
O(SGUT)

h K−1
SGUT

⊗NSGUT/X3
K−1

X3

H K−2
SGUT

⊗NSGUT/X3
K−2

X3
⊗O(−SGUT)

q K−3
SGUT

⊗NSGUT/X3
K−3

X3
⊗O(−2SGUT)

f3 K−4
SGUT

⊗NSGUT/X3
K−4

X3
⊗O(−3SGUT)

g5 K−6
SGUT

⊗NSGUT/X3
K−6

X3
⊗O(−5SGUT)

P K−8
SGUT

⊗N3
SGUT/X3

K−8
X3

⊗O(−5SGUT)

Q K−9
SGUT

⊗N3
SGUT/X3

K−9
X3

⊗O(−6SGUT)

(3.15)

In passing from a global model of this sort back to a local one, we can use z to define a

local coordinate in a neighborhood of SGUT and further expand the sections h,H, q, f3, g5
in z. From (3.10), it is clear that terms beyond the leading order in such an expansion do

not affect the singularity structure along SGUT.

It goes without saying that we need all of the bundles in (3.15) to admit holomorphic

sections. The three-fold X3 that we construct later will have the property that each of

these bundles corresponds to an effective divisor so the existence of holomorphic sections

will be guaranteed.5

3.2 Hypercharge flux condition

As discussed in section 2.1, the GUT group is broken by switching on hypercharge flux

along SGUT which lifts the triplets of the Higgs 5 and 5 multiplets. For SGUT = dPn, this

can be accomplished with a flux of the form [3, 4]

[FY ] = ẽi − ẽj . (3.16)

where ẽi and ẽj are two exceptional curves in dPn. In order for the U(1)Y gauge boson to

remain massless, these two curve classes must be equivalent as elements of H2(X3,Z) [28].

In particular, there has to exist a three-chain Ω3 in X3, such that

∂Ω3 = ẽi ∪ (−ẽj) . (3.17)

This is an important nontrivial constraint that the almost Fano three-fold has to satisfy.

3.3 Quantization of G-flux and tadpole constraints

As familiar from type II intersecting brane models, a number of global consistency condi-

tions must be satisfied. These include tadpole cancellation constraints as well as cancella-

tion of the Freed-Witten anomaly where applicable. We now briefly discuss the analogs of

these constraints in F-theory models.

5In fact, we will give explicit formulae for all of the various holomorphic sections.
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3.3.1 Quantization of G-fluxes

First, let us address the F-theory analog of the Freed-Witten anomaly. In intersecting brane

constructions, this anomaly arises on string worldsheets with boundary unless worldvol-

ume fluxes on the corresponding branes are suitably quantized [32]. A similar discussion

of anomalies in the M2 membrane theory with boundary [33] implies that the G-flux

on M -theory backgrounds, and hence also their F-theory duals, must obey the quantiza-

tion condition

[G4] −
c2(Y4)

2
∈ H4(Y4,Z) . (3.18)

For generic Calabi-Yau four-folds, Y4, there is no reason for c2(Y4) to be an even class so

it may be necessary to turn on nontrivial half-integral G-fluxes to satisfy this constraint.

Because some G-fluxes break 4-dimensional Lorentz invariance and others capture nontrival

field strengths on various brane worldvolumes, it is important to understand which, if any,

G-fluxes must be half-integrally quantized to satisfy (3.18).

For F-theory compactifications on an elliptically fibered Y4 with smooth Weierstrass

form, one can use the approach of [34] to study c2(Y4). For this, we realize Y4 as a suitably

“homogenized” Weierstrass equation of the form

s = ZY 2 −X3 + aXZ2 − bZ3 = 0 , (3.19)

so that X,Y,Z can be thought of as homogenous coordinates on a P
2 bundle W → X3.

These coordinates are sections of O(1) ⊗K−2
X3

, O(1) ⊗K−3
X3

, and O(1), respectively, where

O(1) is a line bundle on W that restricts to a degree 1 line bundle on each P
2 fiber. The

cohomology ring of W is generated by the cohomology ring of X3 along with the class

α = c1(O(1)) that descends from the P
2 subject to the relation

α(α+ 2c1(X3))(α + 3c1(X3)) = 0 , (3.20)

which follows from emptiness of the intersection X = Y = Z = 0. The total Chern class

of Y4 can now be obtained by adjunction, leading to the following expression for c2(Y4)

c2(Y4) = 11c1(B2)
2 + c2(B2) + 13c1(B2)α+ 3α2 . (3.21)

Because s in (3.19) is a section of c1(O(1))⊗K−6
X3

, any integration inside Y4 can be extended

to an integration inside W provided we multiply the integrand by 3(α+2c1(X3)). Because

of (3.20), this means that we have an additional equivalence relation on Y4 that does not

extend to all of W

α(α+ 3c1(X3)) = 0 , (3.22)

which allows us to write c2(Y4) as

c2(Y4) = 11c1(X3)
2 + c2(X3) + 4αc1(X3) . (3.23)

The integral of c2(Y4) over any four-cycle that includes part of the elliptic fiber will get con-

tributions only from the α-dependent term in (3.23) so the result is always even. Note that
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this includes all four-cycles on which we can add G-fluxes without breaking 4-dimensional

Lorentz invariance.

It remains to study integrals of c2(Y4) over four-cycles contained entirely within the

base, X3. For this, we must be careful to accurately account for the contribution of α,

which can have a nontrivial restriction to X3. This can be done by noting that restricting

to X3 amounts to setting Z = 0 or, equivalently, to multiplying the integrand by α.

Recalling (3.20) and (3.22), this means that α and c1(B2) satisfy an additional equivalence

relation inside X3

α+ 3c1(X3) = 0 , (3.24)

so that when c2(Y4) is restricted to X3, it takes the form

c2(Y4)|X3
= c2(X3) − c1(X3)

2 . (3.25)

This is precisely what we expect for the base of an elliptically fibered Calabi-Yau from the

standard adjunction formula. For the specific X3 that we shall construct later, it will be

easy to directly compute c2(X3) and c1(X3) in order to verify that this is an even class. It

is possible that c2(X3) − c1(X3)
2 is an even class for generic almost Fano three-folds X3

but we are currently unaware of a theorem to this effect.

It is important to note that, strictly speaking, these arguments apply only to elliptic

fibrations with smooth Weierstrass form. By contrast, for model building we would like to

consider elliptically fibered four-folds whose Weierstrass form is not smooth due in part to

the SU(5) degeneration locus on which the GUT gauge group is localized. We are there-

fore making an implicit assumption, namely that the relevant object in the quantization

condition (3.18) for our Y4 is the second Chern class of the smooth four-fold obtained upon

resolution of all singularites.

3.3.2 Tadpole conditions

Any consistent compactification must also satisfy a number of tadpole cancellation condi-

tions. We briefly discuss each of these in the context of F-theory compactifications

As is well known, 7-brane tadpole cancellation in F-theory follows immediately from

the Calabi-Yau condition.6 Cancellation of the D5-brane tadpole, on the other hand,

follows from primitivity of the G-flux

G4 ∧ JX3
= 0, (3.26)

which ensures supersymmetry of the background. Here, JX3
is a Kähler form on X3.

This leaves us only with the D3-brane tadpole. In most examples, it is expected that

the induced D3-brane charge of an F-theory compactification can be computed with the

Euler character χ(Y4). This has in fact been checked in several examples with heterotic

duals.7 In what follows, we will assume that it holds also for our Y4 so that, including the

6See, for instance, [24].
7This includes examples with singular Y4 which must first be resolved in order to compute χ [24]. It

should be noted, however, that a mismatch was found for a particularly “badly behaved” example in [24].

This example amounted to completely turning off the deformation h in (3.4) so we expect that for more

generic models this will not be a problem.
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G-flux contribution, cancellation of the D3-brane tadpole amounts to imposing

χ(Y4)

24
=

1

2

∫

Y4

G4 ∧G4 +ND3 . (3.27)

Two important concerns regarding the D3 tadpole are its integrality and its sign. Firstly, we

expect that the number ND3 of D3-branes that must be introduced to cancel the tadpole is

an integer. Secondly, we would like ND3 to be positive so that it does not become necessary

to introduce any D3-branes. While such D3-branes might provide a candidate mechanism

for breaking supersymmetry, we will not consider this possibility here.

To address integrality of the D3-brane tadpole in earnest, we must study not only χ(Y4)

but take into account all G-fluxes that are present. In this paper, we will not embark on a

discussion of G-fluxes in full generality. The cancellation of any half-integral contributions

to (3.27) from G-fluxes or χ(Y4), then, will remain an important input constraint for the

study of moduli stabilization in these backgrounds.

Nevertheless, it remains important that χ(Y4)/24 be at least half-integral. Using the

techniques reviewed above, the authors of [34] demonstrated that the Euler character of a

smooth elliptically fibered four-fold Y4 can be expressed as an integral over Chern classes

of the base, X3, through a formula

χ(Y4) = 12

∫

X3

c1(X3)
(

c2(X3) + 30c1(X3)
2
)

, (3.28)

which makes this fact manifest. Of course, the four-folds that we need for model building

do not admit a smooth Weierstrass form but we again assume that the relevant object

for (3.27) is the Euler character of the smooth four-fold obtained from a suitable resolution

of Y4.

4 Construction of the three-fold base

We now turn to the main object of this paper, namely constructing a family of three-

folds which can serve as the base for elliptically fibered Calabi-Yau four-folds for SU(5)

GUTs. The essential criterion that we impose is that such a three-fold must contain a

del Pezzo surface with a pair of exceptional curve classes that satisfy the hypercharge

constraint (3.17).

In section 4.1 we outline the strategy of our construction. We present a local description

of the geometry in detail in section 4.2. We then embed this setup in P
3 to obtain a

almost Fano three-fold, X3 = X̃, in section 4.3. This three-fold contains a dP2 surface

satisfying (3.17) which can be blown up to dPn if desired. Details of the geometry of X̃

are summarized in 4.5.

4.1 Basic idea of the construction

The starting point of our construction is the specification of a nodal curve inside P
3. Via a

series of blow-ups, we obtain from this a smooth three-fold X. Our final three-fold, X̃ , is

then obtained from this via a flop transition. We will determine effective divisors for X and
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Figure 2. Construction of the base three-fold: The starting point is the nodal curve C in Z.

Blow-up along C results in a new divisor with singular point p0. Blowing up the point p0 yields an

exceptional divisor E ≡ P
1 × P

1, where the two P
1s are homologous in the resulting threefold.

X̃ , compute their intersection numbers, and give explicit holomorphic representatives which

provide us with the necessary holomorphic sections for constructing elliptic fibrations.

This type of three-fold has appeared in the context of Mori’s Minimal Model Program

for three-folds, in the seminal paper [29], (3.44.2), (see also [30] for a concise summary

of the mathematical setup, and [28] for a discussion in the context of hypercharge flux).

The reverse operations to the blowups that we will describe are the so-called extremal

contractions. We shall, however, give a construction in fairly basic terms, by providing

explicit details of the constructions, and thus no prior understanding of [29] will be required.

The setup is summarized in figure 2:

• Choose a nodal curve C in a three-fold Z (which will be P
3 for our purposes), and

blow up along this curve. This results in a new three-fold Y , depicted in the middle

of figure 2. There is a singular point p0, which lies over the nodal point of C. This

singular point is in fact a conifold singularity.

• Blowing up the conifold singularity at p0 results in a smooth three-fold X. This

introduces an exceptional divisor E, which is isomorphic to P
1 × P

1. The two P
1’s

inside E, ℓ1 and ℓ2, are distinct in H2(E,Z) but are homologous inside X. This

is precisely the situation that we require in order to satisfy the hypercharge flux

condition (3.17).

• The vertical curve G is a (−1,−1) curve (with normal bundle O(−1) ⊕ O(−1) in

X), and can be flopped. From the perspective of E, the effect of the flop is to blow

up a point. As such, E transforms to a del Pezzo dP2 whose exceptional curves are

homologous in the three-fold. This geometry is the three-fold X̃ that we will use for

the base of the elliptically fibered Calabi-Yau.

After the flop, we can further blow up points in X̃ in such a way that the dP2 is

increased to dPn with n > 2. We expect that this will be useful in the future for construct-

ing models, which in addition to the GUT sector include e.g. a supersymmetry-breaking

sector [7].
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4.2 Local construction of the three-fold

As a first step we describe locally the various blow-ups leading to the construction of X̃ .

In the next section, we embed this into P
3 and provide divisors and intersection numbers.

For a local description the three-fold Z can be approximated by Z = C
3 and the nodal

curve is described by

C : xy = z = 0 . (4.1)

We see that C has two components, C = C1 ∪ C2, corresponding to x = z = 0 and

y = z = 0. Each component is isomorphic to C and the nodal point p = (0, 0, 0) is the

intersection C1 ∩ C2, see figure 3.

The first step requires blow-up along the curve C, so that the three-fold Y locally takes

the form

Y =
{

((x, y, z), [V0, V1]) ∈ C
3 × P

1
V : xyV0 = zV1

}

. (4.2)

The kernel of the blow-down map

ψ : Y → Z , (4.3)

by definition contains a new divisor

Q = ψ−1(C) = D1 ∪D2 , Di = Ci × P
1
V , (4.4)

which can be written in terms of the local coordinates as

Q =
{

((x, y, z), [V0, V1]) ∈ C
3 × P

1
V : xy = z = 0

}

= C × P
1
V . (4.5)

Y can be covered by two patches, containing the north and south pole, respectively, of

the P
1
V

Y0 = {V0 6= 0} and Y1 = {V1 6= 0} . (4.6)

In local coordinates on C
3 × {V1 6= 0}, which we denote by x, y, z, t = V0/V1

Y1 =
{

(x, y, z, t) ∈ C
4 : xyt = z

}

. (4.7)

Likewise on C
3 × {V0 6= 0} the local coordinates are x, y, z, u = V1/V0, and

Y0 =
{

(x, y, z, u) ∈ C
4 : xy = zu

}

, (4.8)

which exhibits a conifold singularity at the point

p0 = {x = y = z = u = 0} . (4.9)

The three-fold X is obtained by blowing up the conifold singularity, i.e. by gluing in

an exceptional divisor. This can be done in the local patch Y0 by first considering the C
4

parametrized by (x, y, z, u) and blowing up the origin by the standard method of gluing

in a P
3. We then restrict to the conifold xy = zu and take a smooth continuation as we

approach the origin. To blow up the origin of C
4, we introduce a P

3
W with homogeneous

coordinates [W1,W2,W3,W4] and restrict to the submanifold of C
4 × P

3
W obtained by
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Figure 3. Local construction of the three-fold: blow-ups.

imposing the condition that (x, y, z, u) be contained inside the line [W1,W2,W3,W4]. In

equations, this statement is equivalent to

ziWj = zjWi

ziW4 = uWi ,
(4.10)

for i, j = 1, 2, 3. Restricting to xy = zu away from the origin further imposes W1W2 =

W3W4, which we retain as a condition on the full blown-up three-fold. We therefore impose

both equations

z1z2 = z3u , W1W2 = W3W4 . (4.11)

so that the three-fold takes the following form in this patch

X0 =
{

((x, y, z, u), [W1 ,W2,W3,W4]) ∈ C
4 × P

3
W :

(x, y, z, u) ∈ [W1,W2,W3,W4] , xy = zu , W1W2 = W3W4} .

(4.12)

The exceptional divisor of the blowdown map φ0 : X0 → Y0 is

E = φ−1
0 (q) = {(0, 0, 0, 0)}×{[W1 ,W2,W3,W4] ∈ P

3 : W1W2 = W3W4} ∼= P
1×P

1 . (4.13)

The divisor Q maps under the blow-up to a divisor in X0

Q0 =
{

((x, y, z, u), [W1,W2,W3,W4]) ∈ C
4 × P

3 :

(x, y, z, u) ∈ [W1,W2,W3,W4] , xy = z = 0 , W1W2 = W3 = 0
}

.

(4.14)

The exceptional divisor E will house our GUT gauge group so we would like to know

if it is possible to equip it with some more structure. A simple way to achieve this is to

note that the curve G = D′
1 ∩D

′
2 has normal bundles

NG/D′

i
= O(−1) , (4.15)

and therefore can be flopped: i.e. we can blow this curve down, and blow-up another curve

G̃, as depicted in figure 4. All other curves ℓi, ℓ
′
i are (0,−1) curves. After the flop we obtain
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Figure 4. Local construction of the three-fold: flop transition between X and X̃.
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H−Q
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Figure 5. Global Construction of Threefold: blowups.

the threefold X̃ . The flop effectively blows up a point in the divisor E = P
1 × P

1 so that

it transforms into

Ẽ ∼= dP2 , (4.16)

When we realize this in a compact three-fold, X̃ , the two exceptional classes of this dP2

will be equivalent in H2(X̃,Z) so that they may be used to construct a hypercharge flux

for breaking the GUT gauge group.

4.3 Embedding into P
3: before the flop

Now that we have explained the local geometry, we will embed the construction of the last

subsection into a compact three-fold Z, which we take to be P
3 for simplicity. This results

in a three-fold X, which has a local patch given by the construction in section 4.2. We

discuss all the relevant divisor classes and intersection numbers. In the next section, the

final three-fold will be discussed, which is obtained from X by a flop-transition.

4.3.1 Construction of the three-fold

Let Z = P
3 with homogenous coordinates [Z0, Z1, Z2, Z3]. The canonical class is given in

terms of the hyperplane class H as

KZ = −4H . (4.17)

Inside P
3, we consider the nodal curve C defined by the equations

Z4Z1Z2 + (Z1 + Z2)
3 = 0

Z3 = 0 .
(4.18)
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Alternatively, this can be written in affine coordinates zi as

C =
{

[z1, z2, 0, 1] | z1z2 + (z1 + z2)
3 = 0

}

∪ {[1,−1, 0, 0]} . (4.19)

In what follows, we will typically consider the affine patch [z1, z2, z3, 1] of P
3 since this

contains all of C except for a single “point at infinity”. As clear from (4.19), C exhibits

a singular point at [0, 0, 0, 1] which is precisely of the form z1z2 = z3 = 0 as in the local

description (4.1).

The first step in constructing our three-fold is again to blow up along C to obtain the

three-fold Y with the blow-down map

ψ : Y → Z . (4.20)

In coordinates this can be described by considering C
3 × P

1 in the Z4 = 1 patch with

homogeneous coordinates [V0, V1] on the new P
1, which we shall hereafter denote by P

1
V .

The blow-up is then defined in this patch by the equation

Y : V0

(

z1z2 + (z1 + z2)
3
)

= V1z3 . (4.21)

From (4.21), we see that the resulting three-fold exhibits a singular point at

{(z1, z2, z3), [V0, V1]} = {(0, 0, 0), [1, 0]}. As in the local description (4.8), we pass to an

affine patch covering the north pole v0 6= 0 of P
1
V . Then defining again u = v1/v0 the

equation (4.21) in fact becomes

[z1z2 + (z1 + z2)
3] = uz3 , (4.22)

so that near the singular point it behaves like

z1z2 = uz3 . (4.23)

We recognize this as a conifold singularity.

The divisor classes in Y are the exceptional divisorQ, which is a P
1-bundle over C (more

details on the precise geometry of Q can be found in appendix A), and ψ∗(H) = Q+(H−Q).

The canonical class is

KY = ψ∗(KZ) +Q = −4H +Q . (4.24)

The final step is to blow-up the conifold singularity in Y by

φ : X → Y . (4.25)

To do this, we move to a local patch covering the north pole of P
1
V with coordinates

(z1, z2, z3, u = v1/v0) and proceed exactly as in the local setup described in section 4.2. In

particular, we blow up the origin of this C
4 by gluing in a P

3
W with homogeneous coordinates

[W1,W2,W3,W4] and restrict to z1z2 = z3u and its smooth continuation, W1W2 = W3W4,

at the origin. In the end, the three-fold takes the following form in this local patch

X1 =
{

(z1, z2, z3, v1;W1,W2,W3,W4) ∈ C
4 × P

3
W :

(z1, z2, z3, u) ∈ [W1,W2,W3,W4] , z1z2 = z3u , W1W2 = W3W4} .
(4.26)
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As explained in section 4.2, the condition (z1, z2, z3, u) ∈ [W1,W2,W3,W4] can be made

more explicitly written as in (4.10).

We can identify the two P
1’s with the submanifolds

P
1
(1) : W2 = W4 = 0 , P

1
(2) : W2 = W3 = 0 . (4.27)

Note that in this local patch it is not possible to see that these P
1s are in the same class

in X. It is however clear from the global topology of X since their intersections with all

divisors are equivalent. The canonical class of X is

KX = −4H + (D + E) +E , (4.28)

where the exceptional divisor is

φ∗Q = D + E . (4.29)

4.3.2 Curves and intersection numbers

A detailed analysis and derivation of the intersection tables will be given in appendix B.1

and in this section we only summarize the results. As a basis of H2(X,Z), we take the

curve ℓ0, which descends from the unique generator of H2(P
3,Z), as well as the curves ℓ

and G depicted in figure 5. The intersection numbers with various divisors are given by

the following table

H D E

ℓ0 +1 0 0

ℓ 0 +1 −1

G 0 −2 1

The intersections of divisors with one another is furthermore

H E D

H ℓ0 0 3(ℓ+G)

E 0 −2ℓ 2ℓ

D 3(ℓ+G) 2ℓ −3ℓ0 + 12(ℓ +G) − 2ℓ

H −D − E ℓ0 − 3(ℓ+G) 0 3 (ℓ0 − 3(ℓ+G))

(4.30)

from which the following non-vanishing triple-intersections follow

H3 = 1

D3 = −14

E3 = 2

D2H = −3

D2E = 2

E2D = −2 .

(4.31)

We can confirm these intersection numbers from direct computations using the explicit

description of divisors in the next subsection.
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4.3.3 Effective divisors and holomorphic sections

A basic tool for model-building will be the set of divisors, as these will provide us with holo-

morphic sections that we can use to construct elliptic fibrations. We will present explicitly

the holomorphic sections that define various effective divisors which are linear combinations

of H, D, and E. The coordinates Zi, Vj and Wk defined in (4.21), (4.26), (4.10), (4.11) are

the building blocks to write down the holomorphic sections.

Before providing the detailed arguments, we summarize the holomorphic sections cor-

responding to various divisors of interest:

Holomorphic section Divisor class

Z4 H

Z1,2 (H − E) + E = H

Z3 (H −D − E) + (D + E) = H

W1,2,3 H −E

W4 3H −D − 2E

V1 (3H −D − 2E) +E = 3H −D −E

V0 H −D − E

(4.32)

The table also specifies whether a divisor is reducible. For instance, Z3 = 0 defines a pair

of divisors in the classes H − E and E and hence is effectively in the class H.

We now turn to explain these identifications.

• H :

It is easy to see that Z4 is a holomorphic section of O(H), i.e. the locus Z4 = 0 is

a holomorphic representative of H. It entirely misses the patch Z4 = 1. As such it

misses the node of C and hence does not contain the conifold point p0, two facts that

are consistent with H · E = 0.

• H −D − E :

We will show that V0 is a holomorphic section of O(H−D−E). In an affine coordinate

patch, which contains the node, the threefold takes the form

V0(z1z2 + (z1 + z2)
3) = V1z3 . (4.33)

Since V0 multiplies the cubic equation for C, the divisor V0 = 0 contains the full nodal

curve. This ensures that the divisor as a summand picks up a −Q = −(D+E) from

the blowup. Furthermore, the corresponding divisor contains only the south pole of

the P
1
V , [V0, V1] = [0, 1], and thus misses the conifold point and will not intersect E.

This is consistent with the intersection number (H −D − E) ·E = 0.

• (H − E) + E :

We will show that Z1 is a section of O(H), and that Z1 = 0 is a reducible divisor.

The equations (4.10) become

0 = z1Wj = ziW1 ⇒ zi = 0 or W1 = 0

0 = z1W4 = uW1 ⇒ u = 0 or W1 = 0 .
(4.34)
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In the patch W1 = 1, this implies u = zi = 0 for all i so that the condition

(z1, z2, z3, u) ∈ [W1,W2,W3,W4] is vacuous. This means that the entire exceptional

divisor E is contained here. The second component of the solution is W1 = 0, which

contains p0 and hence corresponds to H−E. Note that W1 = 0 parametrizes precisely

the union of the two P
1’s in E so that the W1 = 0 component of Z1 = 0 intersects E

in 2ℓ, as we expect for a divisor in the class H − E.

Similar arguments hold for Z2 = 0 and Z3 = 0.

• H − E :

In order to show thatW1 is a holomorphic section of O(H−E), note thatW1zi = z1Wi

implies that either z1 = 0 or Wi = 0 for all i. The latter is clearly not a solution,

and thus, we are left with the solution space z1 = 0. Not all solutions of z1 = 0 are

automatically solutions to W1 = 0. Rather, as we have seen for the discussion of the

divisor Z1 = 0, only the component which gives rise to H − E is a solution of both

W1 = 0 = z1.

• 3H −D − 2E :

To show thatW4 is a holomorphic section of O(3H−D−2E), note thatW4 = 0 implies

W1W2 = W3W4 = 0 ⇒ W1 = 0 or W2 = 0 , (4.35)

and thus intersects E in two P
1’s, consistent with the fact that (3H−D−2E)·E = 2ℓ.

Furthermore, W4 = 0 is equivalent to v1/v0 = 0. The solution space v1 = 0 (with

v0 6= 0) is given by setting the equation for the curve, C, which is cubic in the

coordinates zi, to zero. Furthermore this divisor passes through the conifold point.

• (3H −D − 2E) + E :

The divisor V1 = 0 has one component given by the solution space to W4 = 0, which

we identified earlier with 3H −D − 2E. The second component of this divisor has

z1 = z2 = z3 = v1 = 0, and thus, no constraint on the Wi apart from (4.11), so that

this component is precisely the divisor E.

4.3.4 Topology of the divisors

A useful basis of divisors is H, E and H −D − E. Their topology is

H ∼= dP3

E ∼= P
1 × P

1

H −D − E ∼= P
2 .

(4.36)

By construction E is the product of two P
1’s as in (4.27). The divisor H arises from a

generic P
2 inside Z = P

3 which intersects the cubic curve C at three points away from the

node. After the blow-ups, then, H corresponds to a dP3. Finally, H − D − E originates

from a P
2 that contains the nodal curve C. The topology of this divisor is unaffected by

the blow-ups. Further details on the geometry of the divisors Q and D are summarized in

appendix A.
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Figure 6. Final three-fold X̃

This concludes our analysis of the three-fold X. From the data that we have extracted

for X, we can now easily determine the full geometry of the final three-fold X̃ by following

through the flop, as we do next.

4.4 Embedding into P
3: after the flop

The curve G is a (−1,−1) curve because it is an exceptional P1. This can also be seen

directly by computing the normal bundle of G inside D, which has degree D · G = −2.

Because G is (−1,−1), we can flop it to obtain a new three-fold, X̃, depicted in figure 6.

The divisors D and E of X carry over to new divisors D′ ad E′ in X̃. The canonical class

also follows simply from KX as

KX̃ = −4H +D′ + 2E′ . (4.37)

The resulting three-fold X̃ has the desired property that the two curves ℓ−G′ are distinct

in H2(E
′,Z) but are nonetheless equivalent in H2(X̃,Z) so that they satisfy the condition

for existence of a suitable hypercharge flux (3.17).

4.4.1 Topological properties of X̃

We now turn to a discussion of several important properties of X̃, including the topology

of various divisors and the intersection tables for divisors and curves. We start with a

discussion of several interesting divisor classes. The divisor H, which was a dP3 before the

flop, remains a dP3 because it is unaffected by the flop. From the viewpoint of H−D−E =

P
2, however, the flop corresponds to blowing up a point so that H − D′ − E′ becomes a

dP1. Similarly, from the viewpoint of E = P
1 × P

1, the flop effectively blows up a point so

that E′ is simply dP2. The topology of the divisor D′ is analyzed in appendix A where it

– 22 –



J
H
E
P
0
8
(
2
0
0
9
)
0
3
0

is shown to be the Hirzebruch surface F4. We can now summarize these results as

H ∼= dP3

E′ ∼= dP2

D′ ∼= F4

H −D′ − E′ ∼= dP1 .

(4.38)

As a basis of H2(X̃,Z), we take the curves ℓ0 and ℓ along with the flopped curve G′

as depicted in figure 6. The intersection numbers of these curves with various divisors are

presented in the following table

H E′ H −D′ − E′ D′

ℓ0 1 0 +1 0

ℓ 0 −1 0 1

G′ 0 −1 −1 2

ℓ−G′ 0 0 +1 −1

The intersections of the divisors with one another are as follows

H E′ H −D′ − E′

H ℓ0 0 ℓ0 − 3l + 3G′

E′ 0 −2ℓ+G′ G′

H −D′ − E′ ℓ0 − 3ℓ+ 3G′ G′ −2ℓ0 + 6ℓ− 5G′

D′ 3ℓ− 3G′ 2ℓ− 2G′ 3ℓ0 − 9ℓ+ 7G′

It will in fact be useful to distinguish the two P
1’s of E′ that are equivalent to ℓ inside X̃ .

Denoting these by ℓ1 and ℓ2, we find that8

E′2 = G′ − ℓ1 − ℓ2 , D′.E′ = (ℓ1 −G′) + (ℓ2 −G′) . (4.39)

The non-vanishing triple intersection numbers are easily computed from the above

data with the following results
H3 = 1

E′ 3 = 1

D′ 3 = −6

D′ 2H = −3

D′ 2E′ = −2 .

(4.40)

In section 4.3.3 we studied various holomorphic divisors and their corresponding sec-

tions on X. Each of these carries over to a divisor or section after the flop. We will

abuse notation in what follows and continue to use the labels Zi,Wj , Vk of (4.32) for the

corresponding holomorphic sections on X̃.

8In order to properly define this, we would require a refined notion of homology. For our purposes, it

will suffice to notice that the divisor D intersects E in both P
1s and thus, the same holds for D′ after the

flop. We denote each of the P
1s by ℓi − G′.
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4.4.2 Geometry of SGUT

To build F-theory models of supersymmetric GUTs from elliptic fibrations over X̃, we will

realize the SU(5) gauge group on the divisor E′:

SGUT = E′ ∼= dP2 . (4.41)

We now discuss the geometry of this divisor in some more detail. As mentioned above, we

know that E′ ∼= dP2 because the flop blows up a point inside the divisor E = P
1 × P

1.

One basis for H2(E
′,Z) is given by the curve classes ℓ1, ℓ2 inherited from E along with the

exceptional class G′. In this basis, the intersection form inside E′ is specified by

ℓ21 = ℓ22 = ℓi ·G
′ = 0 , ℓ1 · ℓ2 = 1 , G′ 2 = −1 . (4.42)

In what follows, however, we prefer to use the standard basis for dP2 consisting of the

hyperplane class, h̃, and the two exceptional curves, ẽi and ẽj

H2(E
′,Z) = 〈h̃, ẽ1, ẽ2〉 . (4.43)

From the intersection form

h̃2 = 1 , ẽi · ẽj = −δij , (4.44)

it is easy to obtain the standard relation of these classes to ℓ1, ℓ2, and G′,

ℓ1 = h̃− ẽ1

ℓ2 = h̃− ẽ2

G′ = h̃− ẽ1 − ẽ2 .

(4.45)

Using (4.39), we can now determine the class inside H2(E
′,Z) of the intersection of any

divisor in X̃ with E′

E′

H 0

D′ ẽ1 + ẽ2
E′ −h̃

(H −D′ − E′) h̃− ẽ1 − ẽ2

Note that SGUT = dP2 is non-contractible in X̃. However, it is possible to get mass

hierarchy MGUT ≪Mpl. Indeed, Kähler form J on X̃ is given by

J = mH − aE′ − bD′

with

m > 0, a > 0, b > 0, a > 2b,

where a ≥ 2b ensures that the curve G′ has non-negative volume. Let us compute the

volume of X̃ :

V olX̃ =
1

6

∫

X̃
J3 =

1

6

(

m3 − a3 + 6b3 − 9mb2 + 6ab2
)
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and the volume of SGUT:

V olSGUT
=

1

2

∫

SGUT

J2 =
1

2
(a2 − 2b2) > 0.

In the limit m ≫ a and m ≫ b one can get MGUT ≪Mpl. In this paper we did not study

moduli stabilization, so it remains an open question if J with m≫ a and m≫ b naturally

arises via stabilization.

4.5 Summary of three-fold X̃

Let us summarize the geometry of the compact three-fold X̃ depicted in figure 6. It has

the following divisor classes

SGUT = E′ : dP2

H : dP3

H −D′ − E′ : dP1

D′ : F4 .

(4.46)

Its canonical class is

KX̃ = −4H +D′ + 2E′ . (4.47)

The curves and triple intersections were determined in subsection 4.4.1. We will take E′

to be the divisor on which the GUT gauge group is localized. The classes in H2(E
′,Z) are

identified with the curves in the three-fold as in (4.45). The exceptional classes ẽ1 and ẽ2
inside E′ are by construction homologous in X̃ and are thus ideal candidates to use for the

hypercharge flux

[FY ] = ẽ1 − ẽ2 . (4.48)

It is in fact easy to see the explicit 3-chain that connects ẽ1 and ẽ2 inside X̃. This is

because each of these curves is homologous to the fiber class of D′ = F4, which we recall

is a P
1 fibration over a base P

1. The 3-chain is constructed from the fiber class along with

the obvious path inside the base P
1.

This completes the discussion of the geometry of the three-fold base X̃.

5 SU(5) GUTs from elliptic fibrations over X̃

In this section, we turn to the study of elliptic fibrations over the three-fold base X̃ . We

first review the global constraints of section 3 in the context of this specific example. We

then proceed to describe the general structure of matter curves and demonstrate, using the

results of [25], that it is possible to engineer 3 generations of chiral MSSM matter.

5.1 Global constraints

Let us first recall the global constraints described in section 3. The 7-brane tadpole is taken

care of by the Calabi-Yau nature of the four-fold, while the hypercharge flux condition has

been built in by our construction of X̃. Indeed, SGUT is a dP2 surface with exceptional
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classes ẽ1 and ẽ2 that are homologous in X̃ so that we can adopt the standard procedure

of breaking the GUT group with a hypercharge flux [FY ] = ẽ1 − ẽ2 [3, 4].

Recall, however, that the quantization condition for G-fluxes,

[G4] −
c2(Y4)

2
∈ H4(Y4,Z) , (5.1)

gave us a nontrivial condition on the base manifold X̃ . In particular, to avoid Lorentz-

violating G-fluxes which have all four indices along X̃, we needed

c2(Y4)|X̃ = c2(X̃) − c1(X̃)2 , (5.2)

to be an even class. For this, we can use the computation of c2(X̃) in appendix C.1 along

with the intersection tables contained therein to directly compute

c2(X̃) − c1(X̃)2 = 2
(

ℓ−G′ − 2ℓ0
)

, (5.3)

which is a manifestly even class.

Finally, we should address the D3 tadpole (3.27). For this, we recall that the Euler

character of any smooth elliptic fibration over X̃ can be computed using the formula (3.28)

χ = 12

∫

X̃c1(c2 + 30c21) . (5.4)

For our specific X̃, this computation is easily performed, with the result

χ

24
= 582 . (5.5)

We expect that this accurately captures the induced D3 brane charge of our fibrations to

follow. That it is both integral and positive means that it can in principle be cancelled by

adding some combination of D3 branes or G-fluxes.

5.2 Matter curves

As described in section 3.1, the structure of matter curves and their intersections is deter-

mined by the choice of five sections which we denoted h,H, q, f3, g5. Using the result (4.37)

for the canonical class of X̃, the bundles of which these are sections of are as follows

Section Bundle

h 4H −D′ − 2E′

H 8H − 2D′ − 5E′

q 12H − 3D′ − 8E′

f3 16H − 4D′ − 11E′

g5 24H − 6D′ − 17E′

(5.6)

Because the SO(10) matter curve, Σ10, is described by the intersection of h = 0 with

SGUT, we see that the class of Σ10 inside dP2 is

Σ10 = 2h̃− ẽ1 − ẽ2 , (5.7)
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which, when irreducible, has the topology of a P
1. The SU(6) matter curve, Σ5, is described

by the intersection of P = 0 with SGUT where we recall that

P = −3Hq2 − 3hf3q + 2g5h
2 . (5.8)

We see that P is a section of O(32H − 8D′ − 21E′),

P ∈ Γ(O(32H − 8D′ − 21E′)) , (5.9)

so that the class of Σ5 inside SGUT is

Σ5 = 21h̃− 8(ẽ1 + ẽ2) . (5.10)

5.3 Getting three generations

In this subsection, we demonstrate that, under suitable conditions on the fibration, it is

possible to turn on G-fluxes to obtain a model with 3 chiral generations of MSSM matter.

This analysis relies heavily on the recent results of [25], where it was demonstrated that

one can use the fundamental spectral cover C̄ of SGUT to determine allowed G-fluxes in F-

theory. Let C̄ be a 5-sheet cover of SGUT defined by the following equation in an auxiliary

three-fold M3-the total space of the projective bundle P (OSGUT
⊕KSGUT

) over SGUT:

b0u
5
2 + b2u

2
1u

3
2 + . . . b5u

5
1 = 0 . (5.11)

Here u1, u2 are homogenous coordinates on the P
1 fiber of M3, so that u2(u1) is a section

of KSGUT
(OSGUT

). Note that b0, . . . , b5 are related with h,H, q, f3, g5 as in (3.11).

It was shown in [25] that the independent G-fluxes allowed in F-theory are in one to

one correspondence with integral classes γ in H(1,1)(C̄) such that

pC : C̄ → SGUT , pC∗γ = 0 . (5.12)

Further, for generic b0, . . . , b5 there is only one independent class γu, the so-called universal

class. To obtain three generations one should choose b0, . . . b5 in a specific way such that

there is at least one primitive class in H1,1(C̄) with the property (5.12). According to [25],

in order to construct such a primitive class one should first find a curve α0 in SGUT which

intersects Σ10 and then construct a curve α in C̄ which does not intersect Σ10 and covers

α0 precisely once. Then, the primitive class is given by

γprim = 5α− p∗CpC∗α , (5.13)

and the number of chiral generations is

Nchir = −
1

2

∫

Σ10

γu − n

∫

Σ10

γprim . (5.14)

The computation of integrals in the above formula reduce to the intersection of classes

in SGUT:
∫

Σ10

γu = −(6c1(SGUT) − t) · (c1(SGUT) − t)

∫

Σ10

γprim = α0 · Σ10 ,

(5.15)
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where t = −c1(NSGUT|X3
).

In our case we may choose α0 in the class h in SGUT = dP2, so that α0 arises as the

intersection of the divisors H −E′ and E′ in X̃. Then, we have α0 ·Σ10 = 2. Furthermore,

in our construction

c1(SGUT) = 3h̃− ẽ1 − ẽ2, t = h̃ , (5.16)

so that
∫

Σ10
γu = −22 and we must choose n = 4 to get three generations.

The non-generic choice of b0 in our case is very similar to that of [25], but we prefer

to work with the global description in terms of sections on X3. More concretely, in the

auxiliary four-fold M4, the total space of the projective bundle P (OX3
⊕ (KX3

⊗ SGUT))

over X3, the curve α0 is given by

W3 = 0 , zSGUT
= 0 , u2 = 0 . (5.17)

The curve α is constructed as in [25] as

W3 = 0 , zSGUT
= 0 , u1 = Pu2 , (5.18)

where P is a section of K−1
X3

⊗ S−1
GUT. Then, the condition that α ∈ C̄ gives a constraint

on b0:

b0 = −
(

b2P
2 + . . . b5P

5
)

|W3→0 +O(W3) . (5.19)

Using the relation between b0, . . . , b5 and h, q,H, f3, g5 as in (3.11) we recast this con-

straint as

g5 = −18P2
(

f3 + 4qP − 12HP2 + 48hP3
)

|W3→0 +O(W3) . (5.20)

6 Getting flavor hierarchies

Though it is possible to construct examples with three generations of 10M and 5M matter

fields, phenomenologically successful models require significantly more structure. As de-

tailed in section 2, this involves putting 5M , Hu, and Hd on distinct 5 matter curves with

the right intersection properties. To build realistic models, then, it is first necessary to find

a geometric setup in which the matter curve Σ5 is reducible and splits into components

with suitable candidates for the 5M , Hu, and Hd matter curves. Given a family of four-

folds with this property, the next step would be to demonstrate the existence of suitable

G-fluxes that engineer the MSSM matter fields in the “correct” place. In this section, we

turn our attention to the geometric conditions and demonstrate that it is not difficult to

satisfy them. We hope to address the issue of G-fluxes in future work.

6.1 Geometric conditions

In addition to requiring Hu, Hd, and the MSSM 5M matter fields to localize on distinct

matter curves, studies of flavor structure in the context of local models suggests that the

up-type and down-type Yukawas should each originate from a unique point of singularity

enhancement (either E6 or SO(12)) where appropriate matter curves meet. In general,

however, our four-folds have several points in SGUT that exhibit E6 and SO(12) singularities
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in the fiber. For instance, recall that we obtain E6 singularities at points inside SGUT = E′

where the holomorphic sections h and H simultaneously vanish. Because h is a section of

O(4H −D′− 2E′), h = 0 intersects SGUT in a curve in the class 2h̃− ẽ1 − ẽ2. On the other

hand, H is a section of O(8H − 2D′ − 5E′) so that H = 0 intersects SGUT in the class

5h̃ − 2(ẽ1 + ẽ2). These two curves have intersection number 6 inside SGUT so that there

are generically 6 points with an E6 singularity in the fiber.

Similarly, SO(12) singularities arise at points inside SGUT where the holomorphic sec-

tions h and q simultaneously vanish. The divisor q = 0 is in the class 12H − 3D′ − 8E′ so

that it intersects SGUT in the class 8h̃− 3(ẽ1 + ẽ2). This means that there are generically

10 points inside SGUT with an SO(12) singularity in the fiber.

Our goal is now clear. We seek an elliptic fibration over X̃ in which Σ5 factorizes into

several irreducible components so that these SO(12) and E6 singular points are sufficiently

spread out. Among these components we seek 3, denoted ΣHu , ΣHd
, and Σ5, such that ΣHu

meets Σ10 in exactly 1 E6 point and ΣHd
meets Σ5 and Σ10 in exactly 1 SO(12) point. To

achieve relatively minimal mixing in the quark sector, it is further preferable for these two

singular points to be fairly close to one another inside SGUT. In fact, one could imagine

merging these two points into a single point that exhibits a singularity of higher rank, such

as E7 or E8, in the fiber [13].

A further condition that we find appealing, though not necessary, is to look for four-

folds in which all irreducible components of Σ5 are curves of genus 0. Such a large splitting

of Σ5 is more likely to yield a significant spread of E6 and SO(12) points among various

components and also has the nice advantage that each component will house a purely

chiral spectrum. This means that, with the right G-fluxes, it is feasible that one could

engineer precisely the chiral matter content of the MSSM with nothing else, not even extra

vector-like pairs.9

6.2 Candidate geometries for F-theory GUTs

We therefore seek elliptic fibrations over X̃ in which the holomorphic section, P , that

determines Σ5 factorizes into a product of holomorphic sections

P =
∏

i

Pi . (6.1)

For generic Pi, the divisor defined by Pi = 0 will meet SGUT in an irreducible curve class.

However, it is possible that such a matter curve is further reducible inside SGUT. Several

examples of this are discussed in detail in appendix D. For clarity, we will use the term

“factor” in what follows for the Pi, which may or may not be irreducible inside SGUT. We

will reserve the term “component” for an irreducible component of P .

This distinction is important because the reducibility of at least one factor Pi = 0

inside SGUT is crucial for model building with elliptic fibrations over X̃, as we now explain.

Any divisor inside X̃ intersects SGUT in a class that is symmetric in ẽ1 and ẽ2 so that, in

particular, the GUT-breaking hypercharge flux, [FY ] ∼ ẽ1 − ẽ2, restricts trivially to the

9Of course, one usually does not worry about vector-like pairs unless there is an additional symmetry

that protects them. Nevertheless, we feel that a model without such pairs would be nice to attain.
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matter curve originating from each factor, Pi. The distinguishing feature of a Higgs matter

curve, though, is a nontrivial hypercharge flux that lifts the unwanted triplets. This means

that to obtain matter curves for Higgs fields, we must require at least one of the factors

Pi = 0 to be reducible inside SGUT into components with nontrivial FY .

In fact, the absence of exotics requires that Hu and Hd come from two distinct com-

ponents of the same factor. That the hypercharge flux restricts trivially to a given factor

means that there is no net chirality in the doublet spectrum there.10 This means that if Hu

is engineered on one component of the factor, another component will necessarily contain

a second light doublet with opposite quantum numbers. If this extra doublet is not Hd

then it represents an additional unwanted exotic.

We now turn to the issue of realizing a particular factorization (6.1) inside an elliptically

fibered four-fold. What makes this slightly nontrivial is that we do not specify P directly

when constructing the fibration but rather the sections h, H, q, f3, and g5, in terms of

which P is given by (3.6)

P = −3Hq2 − 3hf3q + 2g5h
2 . (6.2)

In appendix E, we discuss a general method for constructing four-folds for a given choice of

factors, Pi, before going on to discuss several explicit examples. In all of these examples, h

is chosen so that the 10 matter curve, Σ10, is an irreducible element of the class 2h̃− ẽ1− ẽ2

Σ10 = 2h̃− ẽ1 − ẽ2 . (6.3)

6.2.1 The “maximal” factorization

The most natural factorization to consider is the “maximal” one, in which the Pi all reduce

inside SGUT to linear polynomials in the Wj . This is the example that we discuss in ap-

pendix E.1. As described there, it corresponds to a splitting of Σ5 into factors according to

Σ5 = 21h̃− 8(ẽ1 + ẽ2) → 8 × (2h̃− ẽ1 − ẽ2) + 5 × h̃ . (6.4)

The factors of Σ5 naturally split into three groups, which we denote as in the following table

Matter Curve Class in dP2

Σ10 2h̃− ẽ1 − ẽ2
Σ5,a (a = 1, . . . , 5) 2h̃− ẽ1 − ẽ2
Σ5,A (A = 1, . . . , 3) 2h̃− ẽ1 − ẽ2
Σ5,µ (µ = 1, . . . , 5) h̃

(6.5)

We also include the 10 matter curve in this table for completeness. In constructing the

fibration, the intersections of various factors of Σ5 with Σ10 are fixed as in the following table

Intersecting Curves Singularity Types

Σ10 ∩ Σ5,a ∩ Σ5,µ (µ = a) SO(12)

Σ10 ∩ Σ5,A E6

(6.6)

10To simplify the discussion, we assume that the 5M matter fields are localized on a different factor so

that the net chirality of 5’s on the Higgs factor is zero. This assumption is ultimately not necessary, though.
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Each of these intersections occurs with multiplicity 2 so it is easy to verify that there are

generically 6 E6 points and 10 SO(12) points. An important feature of this example is that

no single factor of Σ5 contains both an E6 point and an SO(12) point. Because the Hu

matter curve must contain an E6 point and the Hd matter curve must contain an SO(12)

point, there is no single candidate “Higgs factor” from which both may be obtained as

components. As described above, this means that we will be forced to introduce extra

exotics beyond the matter content of the MSSM.

6.2.2 A geometry with hierarchical Yukawas

The problem with the previous example was that Σ5 was “too factorized” in the sense

that no single factor contained both SO(12) and E6 points. A possible remedy for this

is to consider a slightly less factorized form in which one of the factors corresponds to a

(possibly degenerate) curve of genus 1 inside SGUT. If this curve contains both SO(12) and

E6 points then it can be a good candidate Higgs curve if it is indeed degenerate, thereby

splitting into distinct components for Hu and Hd inside SGUT.

We consider two different Ansätze for P of this type in appendix E.2 and E.3 which

lead to two families of elliptically fibered four-folds. We focus here on the example of

section E.2, in which Σ5 is split according to

Σ5 = 21h̃− 8(ẽ1 + ẽ2) → (3h̃ − ẽ1 − ẽ2) + 7 × (2h̃ − ẽ1 − ẽ2) + 4 × h̃ . (6.7)

The factors of Σ5 naturally divide into five groups which we denote as in the table below

Matter Curve Class in dP2

Σ10 2h̃− ẽ1 − ẽ2

Σ5,a (a = 1, . . . , 4) 2h̃− ẽ1 − ẽ2

Σ5,A (A = 1, 2) 2h̃− ẽ1 − ẽ2

Σ5,µ (µ = 1, . . . , 4) h̃

Σ̃5,P1 2h̃− ẽ1 − ẽ2

Σ̃5,T 2 3h̃− ẽ1 − ẽ2

(6.8)

As before, we include the 10 matter curve, Σ10, for completeness. The intersections of Σ10

with various components of Σ5 are as follows

Intersecting Curves Singularity Types

Σ10 ∩ Σ5,a ∩ Σ5,µ (µ = a) SO(12)

Σ10 ∩ Σ5,A E6

Σ10 ∩ Σ̃5,P1 ∩ Σ̃5,T 2 SO(12)

Σ10 ∩ Σ̃5,T 2 E6

(6.9)

Once again, it is easy to verify that there are generically 6 E6 points and 10 SO(12) points.

Note that if we identify Σ5,P1 as the 5M matter curve and Σ̃5,T 2 as a Higgs matter curve

then we get precisely the Yukawa couplings that are needed for the MSSM. Further, we
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demonstrate in appendix E.2 that it is possible to choose Σ̃5,T 2 to be a reducible curve

inside SGUT that splits according to

Σ̃5,T 2 = 3h̃− ẽ1 − ẽ2 → (2h̃− ẽ1) + (h̃− ẽ2) . (6.10)

For this choice, one can keep track of the intersections of each component. The results can

be summarized as follows

Intersecting Curves Singularity Type

Σ10 ∩ Σ̃5,P1 ∩ Σ̃
(2h̃−ẽ1)
5,T 2 SO(12)

Σ10 ∩ Σ̃
(2h̃−ẽ1)
5,T 2 E6

Σ10 ∩ Σ̃
(h̃−ẽ2)
5,T 2 E6

(6.11)

Moreover, each of the intersections in the above table corresponds to a single point.11

Given this structure, we can satisfy all of the requirements set forth in section 2 provided

we identify

Curve Matter to be Engineered

Σ10 10M

Σ̃5,P1 5M

Σ̃
(2h̃−ẽ1)
5,T 2 Hd

Σ̃
(h̃−ẽ2)
5,T 2 Hu

(6.12)

In particular, the up-type Yukawa coupling arises from a single E6 point and the down-type

Yukawa coupling from a single SO(12) point.12

In summary, this example contains candidate matter curves for all MSSM matter fields

which exhibit the right intersection properties to give rise to Yukawa couplings with natural

hierarchies. It remains to demonstrate that suitable G-fluxes can be introduced in order

to localize matter fields on the specific curves we have assigned to them.

7 Concluding remarks

In this paper, we have studied F-theory compactifications on elliptically fibered four-folds

that give rise to SU(5) supersymmetric GUTs. The three-fold X̃ that we constructed to

serve as the base of these fibrations is remarkably simple, having only two divisor classes

in addition to the contractible dP2 on which the GUT gauge group is localized. Because of

this simplicity, we expect that four-folds constructed from X̃ will provide a fruitful setting

for exploring the properties of compact supersymmetric GUT models in F-theory.

For generic four-folds that are built from X̃ and realize SU(5) GUTs, we described

global consistency conditions, studied the matter curves and their intersections, and demon-

strated that, with a suitable tuning, it is possible to engineer precisely 3 chiral generations

11In general, we expect that Σ10 (in the class 2h̃ − ẽ1 − ẽ2) meets Σ̃5,T2 (in the class 3h̃ − ẽ1 − ẽ2) in 4

points. In that sense, the specific choice of matter curves in appendix E.2 is nongeneric as one intersection

point, namely the SO(12) one, occurs with degree 2.
12Though the Hd matter curve meets the 10M one at a second E6 point, SU(3)×SU(2)×U(1)Y invariance

prohibits any couplings involving only massless modes from arising there
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of MSSM matter. To improve the phenomenology of these compactifications, though, it is

necessary to refine them in order to accommodate some of the intricate geometric struc-

tures that have been suggested by the study of local models. In the present work, we

have considered some simple conditions that give rise to flavor hierarchies in the Yukawa

matrices and a sufficiently long lifetime for the proton. To build truly realistic compact

models, however, several issues remain to be addressed.

Firstly, it is necessary to demonstrate that the realization of geometric ingredients from

local models along the lines of section 6 can be combined with the existence of G-fluxes that

enable one not only to engineer 3 generations of the MSSM, but to ensure that the various

matter fields localize on the “correct” curves. In addition, more intricate phenomenological

questions beyond those considered here should be addressed. For instance, we have paid

virtually no attention to the pairwise intersection of 5 matter curves in SGUT at points with

an SU(7) degeneration of the fiber. The interactions that originate from such points serve a

number of useful purposes, from generating Dirac neutrino masses [3, 13, 14] to providing a

simple implementation of gauge mediation [7]. Along these lines, it would also be interesting

to study various supersymmetry-breaking mechanisms, such as the one proposed in [5], in

a compact example since this would avoid many of the intrinsic assumptions that have to

be made when discussing this issue in a local setting.

Finally, variations on the construction in section 4, by choosing embeddings of the

cubic curve into three-folds other than P
3, should give rise to a large class of almost Fano

three-folds that would be interesting to study in the same way as X̃.
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A Topology of various divisors

A.1 Topology of Q and D

In this appendix we discuss the geometries of various divisors in X and X̃ . Let i : C → P
3

be the inclusion of the nodal curve defined by

Z4Z1Z2 + (Z1 + Z2)
3 = 0,

Z3 = 0.
(A.1)
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q1 q2

qF6

Qb

f1 f2

Figure 7. Resolution of singularity πQ : F6 → Q.

The nodal curve is the zero locus of a cubic equation and a linear equation, so the normal

bundle of C in P
3 is given by

NC/P3 = L3 ⊕ L, L = i∗OP3(1). (A.2)

So the exceptional divisor Q is the following P
1-bundle over C:

Q ∼= P(NC) = P(L3 ⊕ L) ∼= P(L2 ⊕OC). (A.3)

Let πC : P
1 → C be the normalization (resolving the nodal singularity). Then π∗CL =

OP1(3), so we have a resolution of singularity

πQ : F6 = P (OP1(6) ⊕OP1) → Q (A.4)

which covers the resolution of singularity πC : P
1 → C. In figure 7, π−1

Q (q) = {q1, q2}, f1

and f2 are fibers of F6 → P1, and b · b = −6.

Blowing up F6 at q1 and q2, we obtain a surface S and a resolution of singularity

πD : S → D. In figure 8, e1, e2, f1 − e1, f2 − e2 are -1 curves in S. Under πD, f1 − e1 and

f2 − e2 are mapped to G, and b is mapped to the curve D∩ (H −D−E). Finally, blowing

down the -1 curves f − e1 and f − e2 in S, we obtain F4
∼= D′. We will demonstrate this

explicitly in the next subsection.

A.2 Topology of D′

To determine the topology of the divisor D′ in X̃, note that

c2(X̃) ·D′ = 8 , (D′)3 = D′ · ((H−D′−E′)+E′−H)2 = D′ · (10l−8G′) = −6 . (A.5)

Since KX̃ ·D′ = 2l − 3l0 this implies

∫

c1(TD′)2 = 8 , χD′ = 4 . (A.6)
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e1

b

e2

b+6f−e1−e2

S
E

D

G

H−D−E

f1−e1 f2−e2

Figure 8. Resolution of singularity πD : S → D

So in particular, this could be any of the Hirzebruch surfaces Fm, which are fibrations over

σ = P
1 with fiber class f and intersections

σ2 = −m, σ · f = 1 , f2 = 0 . (A.7)

The canonical class is

KFm = −2σ − (m+ 2)f (A.8)

with

K2
Fm

= 8 , χFm = 4 , KFm · σ = m− 2 . (A.9)

Thus, only from the last relation can be we distinguish the various Hirzebruch surfaces.

By adjunction formula and σ = P
1 and thus Kσ = O(−2) we obtain

O(−2) = Kσ = KD′ |σ ·Nσ . (A.10)

For σ = D′ ∩ (H −D′ − E′), the normal bundle is determined from

D′ ∩ (H −D′ − E′)2 = −4 ⇒ Nσ = O(−4) , (A.11)

and thus

KD′ |σ = O(2) . (A.12)

Thereby we obtain that

D′ = F4 . (A.13)

B Geometry of X

B.1 Divisors and intersections in X

We compute the intersection matrices for our three-fold, X, before the flop. We have three

divisor classes, H, D, and E along with three curve classes ℓ0, ℓ, and G. We know that
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H · H = ℓ0, H · E = 0, and H · D = 3(ℓ + G). Further, we have that D · E = 2ℓ. This

immediately gives us the following table

H E D

H ℓ0 0 3(ℓ+G)

E 0 ∗ 2ℓ

D 3(ℓ+G) 2ℓ ∗

(B.1)

We also know some intersections with curves. For instance, we know that H · ℓ0 = 1,

H · ℓ = 0, H ·G = 0. Because E is an exceptional P
1×P

1, we know that the normal bundle

of E inside X is (−1,−1) and hence that ℓ ·E = −1. Further, we know that E · (ℓ+G) = 0

so G ·E = 1. We also have E ·ℓ0 = 0. Turning now to intersections with D, we might think

that ℓ ·D = 0 because the normal bundle of ℓ = E ∩D inside E has degree 0. However, ℓ

always intersects the other P
1 inside E at a point and this other P

1 is also identified with

a cycle in D. This means that actually ℓ · D = 1. Next, we know that G is a (−1,−1)

curve so that G ·D = −2. The factor of 2 arises because G effectively meets D twice. All

of this is consistent with the fact that we expect the restriction of ND/X to ℓ+G to have

degree −1, a condition which is equivalent to D · (ℓ+G) = −1. This is all summarized in

the following table

H E D

ℓ0 1 0 0

ℓ 0 −1 1

G 0 1 −2

(B.2)

To complete our intersection numbers, we study the divisor H −D − E. This is the

P
2 that descends from the class H inside P

3 and contains the full nodal curve C. We now

recall that this P
2 fails to intersect E

(H −D − E) ·E = 0 . (B.3)

Further, (H −D −E) ·D is the nodal curve C, which is in the class 3h inside H −D−E,

where h is the hyperplane class of H − D − E. This means that C has a normal bundle

inside H −D − E of degree 9 or, in other words, that

(H −D − E) ·D ·D = 9 . (B.4)

This is now enough to fix the remaining intersections, E2 and D2. For starters, we see that

E2 = (H −D) · E = −2ℓ . (B.5)

Further, we can determine (H −D − E) ·D from

[(H −D − E) ·D] ·H = 3

[(H −D − E) ·D] ·D = 9

[(H −D − E) ·E] · E = 0 ,

(B.6)

– 36 –



J
H
E
P
0
8
(
2
0
0
9
)
0
3
0

where we computed the first and third using known intersection data and the second follows

from the reasoning above. This uniquely fixes

(H −D −E) ·D = 3 [ℓ0 − 3(ℓ+G)] . (B.7)

We can understand this result by recalling that (H − D − E) · D is precisely the nodal

curve C. An element of the hyperplane class h inside H −D −E will generically intersect

C three times. As such, h ∼ ℓ0 − 3(ℓ+G). Now, the above result is simply the statement

that C is in the class 3h inside H −D − E.

This result finally allows us to compute D2 via

D2 = H ·D − E ·D − (H −D − E) ·D

= 3(ℓ+G) − 2ℓ− 3 [ℓ0 − 3(ℓ+G)]

= −3ℓ0 + 12(ℓ +G) − 2ℓ .

(B.8)

Our complete intersection tables are therefore

H E D

H ℓ0 0 3(ℓ+G)

E 0 −2ℓ 2ℓ

D 3(ℓ+G) 2ℓ −3ℓ0 + 12(ℓ+G) − 2ℓ

H −D − E ℓ0 − 3(ℓ+G) 0 3 [ℓ0 − 3(ℓ+G)]

H E D

ℓ0 1 0 0

ℓ 0 −1 1

G 0 1 −2

(B.9)

One can check that the triple intersection matrix is associative by directly computing

H3 = 1

H2D = 0

H2E = 0

D3 = −14

D2H = −3

D2E = 2

E3 = 2

E2H = 0

E2D = −2

HDE = 0 .

(B.10)

B.2 KX and c2(TX)

The canonical class is

KX = −4H + (D + E) +E . (B.11)

To determine c2(TX), we use the following formula for the Euler character of a divisor

S ⊂ X

χ(S) = S3 +KX · S2 + c2(TX) · S . (B.12)
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Given this, we can determine c2(TX) provided we already know the topology of three

divisors. Indeed, we know that E = P
1×P

1, H = dP3, and H−D−E = P
2. Recalling that

χ(P2) = 3 , χ(P1 × P
1) = 4 , χ(dPn) = 3 + n , (B.13)

we can now compute

c2(TX) ·H = χ(H) −H3 −KX ·H2 = 9

c2(TX) ·E = χ(E) − E3 −KX · E2 = 0

c2(TX) · (H −D − E) = χ(H −D − E) − (H −D − E)3 −KX · (H −D − E)2 = −3 .

(B.14)

This fixes

c2(TX) = 9ℓ0 − 12(ℓ+G) = 9H2 − 4H ·D . (B.15)

C Geometry of X̃

C.1 Divisors and intersections in X̃

After the flop, our three-fold X̃ has divisors H, E′, and D′ along with curve classes ℓ0, ℓ,

and G′. We still have that H ·H = ℓ0 and H · E′ = 0. For H ·D′, however, we note that

the P
1 corresponding to ℓ+G has been replaced after the flop by ℓ−G′. This means that

H ·D′ = 3(ℓ−G′). We also have that E′ ·D′ = 2(ℓ−G′). This information already allows

us to nearly complete the table of divisor intersections

H E′ D′

H ℓ0 0 3(ℓ−G′)
E′ 0 ∗ 2(ℓ−G′)
D′ 3(ℓ−G′) 2(ℓ−G′) ∗

(C.1)

Before determining D′ 2 and E′ 2, let us first turn to divisor/curve intersections. As

before, H.ℓ0 = 1 while H.ℓ = 0 and H.G′ = 0. Further, we know that ℓ − G′ has degree

−1 in E′ so that D′ · (ℓ − G′) = −1. To compute the rest, we note that H − D′ − E′ is

a dP1 with exceptional curve G′. This follows because H − D − E was a P
2 in X and

performing the flop essentially blew up a point in this P
2. Because G′ is a (−1,−1) curve,

we see that (H −D′ − E′) · G′ = −1 and E′ · G′ = −1. Since H · G′ = 0 this leads us to

conclude that D′ ·G′ = 2, which also makes sense from figure 6. Since we already saw that

D′ · (ℓ − G′) = −1 this means that D′ · ℓ = 1. Finally, we expect that ℓ · E′ is unaffected

by the flop so that ℓ ·E′ = −1. This allows us to fill out the table below. For comparison,

we also display the table for X before the flop.

H E′ D′

ℓ0 1 0 0

ℓ 0 −1 1

G′ 0 −1 2

H E D

ℓ0 1 0 0

ℓ 0 −1 1

G 0 1 −2

(C.2)
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Finally, we need to determine E′ 2 and D′ 2. By analogy to our results for X, we turn to

a study of H−D′−E′, which is a dP1 with exceptional curve G′. We note that H−D′−E′

intersects E′ precisely in G′

(H −D′ − E′) ·E′ = G′. (C.3)

Since (H − D − E) · D was in the class 3h inside H − D − E = P
2, we expect that

(H −D′ −E′) ·D′ is in the class 3h− ne inside H ′ −D′ −E′ = dP1 for some n. In fact, it

is easy to see that n must be 2 because (H −D′ −E′) ·D′ intersects the exceptional curve

G′ twice. This means that the normal bundle of (H −D′ −E′) ·D′ inside D′ has degree 5

or, in other words,

(H −D′ − E′) ·D′ ·D′ = 5 . (C.4)

This is now enough to fix E′ 2 and D′ 2. For E′ 2, we see from (C.3) that

E′ 2 = H · E′ −D · E′ −G′ = 0 − 2(ℓ−G′) −G′ = G′ − 2ℓ . (C.5)

For D′ 2, we can determine it from

[

(H −D′ −E′) ·D′] ·H = 3
[

(H −D′ − E′) ·D′] ·D′ = 5
[

(H −D′ − E′) ·D′] ·E′ = 2 .

(C.6)

where we computed the first and third using known intersection data and the second is

simply (C.4). This uniquely fixes

(H −D′ − E′) ·D′ = 3ℓ0 − 9ℓ+ 7G′ , (C.7)

from which we conclude that

D′ 2 = −3ℓ0 + 10ℓ− 8G′ . (C.8)

Our complete intersection tables are therefore

H E′ D′

H ℓ0 0 3(ℓ−G′)
E′ 0 G′ − 2ℓ 2(ℓ−G′)
D′ 3(ℓ−G′) 2(ℓ−G′) −3ℓ0 + 10ℓ− 8G′

H −D′ − E′ ℓ0 − 3(ℓ−G′) G′ 3ℓ0 − 9ℓ+ 7G′

H E′ D′

ℓ0 1 0 0

ℓ 0 −1 1

G′ 0 −1 2

(C.9)
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One can check that the triple intersection matrix is associative by directly computing

H3 = 1

H2D′ = 0

H2E′ = 0

D′ 3 = −6

D′ 2H = −3

D′ 2E′ = −2

E′ 3 = 1

E′ 2H = 0

E′ 2D′ = 0

HD′E′ = 0 .

(C.10)

C.2 KX̃ and c2(TX̃)

The canonical class of X̃ is

KX̃ = −4H + (D′ + E′) + E′ . (C.11)

To determine c2(TX̃), we will again use the formula for the Euler character of a divi-

sor S ⊂ X̃

χ(S) = S3 +KX̃ · S2 + c2(TX̃) · S . (C.12)

along with knowledge of the topology of three divisor classes. In particular, we know that

E′ = dP2, H = dP3, and H −D′ − E′ = dP1. This allows us to compute

c2(TX̃) ·H = χ(H) −H3 −KX̃ ·H2 = 9

c2(TX̃) · E′ = χ(E′) − E′ 3 −KX̃ · E′ 2 = 2

c2(TX̃) · (H −D′ − E′) = χ(H −D′ − E′)−(H −D′ − E′)3−KX̃ · (H −D′ −E′)2 = −1 .

(C.13)

which fixes

c2(TX̃) = 9ℓ0 − 12ℓ+ 10G′ . (C.14)

D Examples of matter curves in E and E
′

Matter curves in X̃ are determined by the intersection of the zero locus of a particular

holomorphic section with E′ = dP2. It is important to correctly identify not only the class

of the resulting matter curve in E′ but whether or not it is an irreducible curve. The former

follows directly from the intersection data of section 4.3 but the latter requires a study of

the sections themselves. In this appendix, we describe several examples, some of which are

useful in the explicit constructions of this paper.
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The easiest way to study matter curves in E′ is to first understand them in E, before

the transition from X to X̃ , and then carry them through the flop. Recall that E = P
1×P

1

is realized as the submanifold of P
3
W satisfying

W1W2 = W3W4 , (D.1)

where the Wi are homogeneous coordinates on P
3
W . We recall that each Wi can be extended

globally inside X to a well-defined section of a holomorphic line bundle. For W1, W2, and

W3 the relevant line bundle is O(H − E) while for W4 it is O(3H − D − 2E). Because

W4 is distinguished from the others, it is necessary to introduce extra sections in order to

extend homogeneous equations such as (D.1) globally on X. This is easily accomplished

by recalling that both V0, which is a section of O(H −D −E), and Z4, which is a section

of O(H), take the value 1 in the neighborhood of E. As such, any homogeneous equation

in the Wi can be extended globally provided we replace Wi with Z4V0Wi for i 6= 4. In the

rest of this appendix, we work only locally near E or E′ so that homogeneous polynomials

in the Wj will suffice.

The middle homology of E is quite simple as it is generated by two curve classes, ℓ1
and ℓ2,

13 corresponding to the two different P
1’s. The intersection product is

ℓ21 = ℓ22 = 0 , ℓ1 · ℓ2 = 1 . (D.2)

To study E′, we note that, from the perspective of E, the flop transition corresponds

to blowing up a single point p0,

p0 = [W1,W2,W3,W4] = [0, 0, 0, 1] , (D.3)

inside E. This adds a new exceptional curve, G′, with intersections

G′ · ℓi = 0 , G′ 2 = −1 . (D.4)

The relation to the usual basis of H2(dP2,Z) is now as in section 4.4.2

ℓ1 ↔ h̃− ẽ1

ℓ2 ↔ h̃− ẽ2

G′ ↔ h̃− ẽ1 − ẽ2 .

(D.5)

This means, for instance, that a representative of the class ℓ1 ∈ H2(E,Z), which does not

contain p0 will carry over to h̃ − ẽ1 after the flop. If ℓ1 passes through p0, though, it will

carry over to ℓ1 −G′ = ẽ2 inside E′. To avoid confusion, we will always use the standard

basis h̃, ẽ1, and ẽ2 when writing elements of H2(E
′,Z) so that ℓ1, ℓ2 always refer to elements

of H2(E,Z).

D.1 Linear polynomials

We now study a number of examples involving linear polynomials in the Wi.

13By construction, ℓ1 and ℓ2 are homologous inside X, but we are interested in studying them as elements

of H2(E, Z) in this appendix so we will continue to distinguish them.
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D.1.1 Example 1: W2 = 0

As a first example, let us consider the curve W2 = 0. In E, this is the intersection of

W2 = 0 and (D.1) inside P
3
W , which has two components

W2 = W3 = 0 , W2 = W4 = 0 . (D.6)

We now fix our identifications of ℓ1 and ℓ2 so that

W2 = W3 = 0 ↔E ℓ2

W2 = W4 = 0 ↔E ℓ1 .
(D.7)

To follow this through the flop, we note that W2 = W3 = 0 contains p0 while W2 = W4 = 0

does not. This means that

W2 = W3 = 0 ↔E′ ẽ1

W2 = W4 = 0 ↔E′ h̃− ẽ1 .
(D.8)

We therefore see that W2 = 0 splits into two irreducible components. The net class is

(ẽ1) + (h̃− ẽ1) = h̃, as expected from section 4.3 and the fact that W2 extends to a section

of O(H − E′).

D.1.2 Example 2: W4 = 0

For a second example, consider the curve W4 = 0. Inside E, this also has two components

W1 = W4 = 0 ↔E ℓ2

W2 = W4 = 0 ↔E ℓ1 .
(D.9)

Each of these misses p0 so they carry over after the flop to

W1 = W4 = 0 ↔E′ h̃− ẽ2

W2 = W4 = 0 ↔E′ h̃− ẽ1 .
(D.10)

The total class of W4 = 0 is 2h̃ − ẽ1 − ẽ2, as expected from section 4.3 and the fact that

W4 extends to a section of O(3H −D′ − 2E′).

D.1.3 Example 3: W3 = W4

To see that one can also obtain irreducible matter curves from linear polynomials,14 we

consider now the example W3 = W4. Before the flop, this is an irreducible curve in the

class ℓ1 + ℓ2 ∈ H2(E,Z). Because it misses p0, it carries over to a curve in the class

2h̃− ẽ1 − ẽ2 ∈ H2(E
′,Z). This is consistent with what we expect from section 4.3 and the

fact that an extension of W3 = W4 to X̃ takes the form Z4V0W3 = W4, which is a section

of O(3H −D′ − 2E′).

14Indeed, generic linear polynomials give rise to irreducible matter curves.
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We now list several common curves and their classes in E′

Equation Class in dP2

W2 = W3 = 0 ẽ1
W1 = W3 = 0 ẽ2
W2 = W4 = 0 h̃− ẽ1
W1 = W4 = 0 h̃− ẽ2
W3 = W4 2h̃− ẽ1 − ẽ2
W1 = W2 h̃

(D.11)

D.2 A degenerate T 2 example

We now turn to more intricate examples involving higher degree polynomials that are useful

for the explicit constructions in this paper.

One such example is the quadratic polynomial

W1(W4 −W3 −W2) +W2W4 . (D.12)

The extension of this polynomial to X̃ takes the form

W1(W4 − V0Z4W3 − V0Z4W2) +W2W4 , (D.13)

and is a section of O(4H−D′−3E′). From section 4.3, this means that its intersection with

E′ will be an element of the class 3h̃− ẽ1 − ẽ2. Irreducible curves in the class 3h̃− ẽ1 − ẽ2
have genus 1 so generic polynomials of this type describe T 2’s. By inspection, however, we

see that (D.12) contains an irreducible component

W1 = W4 = 0 , (D.14)

in the class h̃ − ẽ2. This means that this particular curve is in fact a torus that has

degenerated into multiple components. The remaining component is a curve in the class

2h̃ − ẽ1, a parametrization of which in terms of an affine coordinate x is given by

[W1,W2,W3,W4] = [x(x2 + x− 1), x, x2, x2 + x− 1] . (D.15)

From this it is easy to see that, as expected, the 2h̃ − ẽ1 component, (D.15), intersects

the h̃− ẽ2 component (D.14), at precisely two points, namely the two roots of x2 + x− 1,

x± = −1
2 ±

√
5

2 . The ”point at infinity” of the 2h̃ − ẽ1 component that is not included in

the parametrization (D.15) is simply [1, 0, 0, 0].

E Several classes of elliptic fibration

In this appendix, we describe several classes of elliptic fibrations in which the holomorphic

section P that determines the 5 matter curves factorizes into a product of several sections

P =
∏

i

Pi , (E.1)
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each of which we will eventually choose to meet SGUT in a class of relatively low genus.

For generic Pi, the divisor defined by Pi = 0 will meet SGUT in an irreducible curve class.

However, it is possible that such a matter curve is further reducible inside SGUT. For

clarity, we will use the term ”factors” in what follows for the Pi, which may or may not

be irreducible inside SGUT. We will reserve the term “component” for an irreducible curve

class.

Before turning to a detailed discussion of P , let us first focus on h, which is a section

of O(4H −D′ − 2E′). In order to account for the −D′, we must include a factor of W4,

V0, or V1. As such, the most general expression for h that we can write is

h(4H−D′−2E′) = h
(3H−E′)
0 V

(H−D′−E′)
0 + h

(H−E′)
1 V

(3H−D′−E′)
1 + h

(H)
2 W

(3H−D′−2E′)
4 , (E.2)

where h0, h1, and h2 are sections of the indicated bundles. In general, it is simplest to

choose any section of a bundle of the form (n + m)H − mE′ to be proportional to Zn
4 .

In that case, what remains is a section of m(H − E′), which we can choose to be any

degree m polynomial Fm(W1,W2,W3). Because Z4 = 1 on SGUT, the restriction of such

a section to SGUT is easily determined as in appendix D by following the intersection of

Fm(W1,W2,W3) with W1W2 = W3W4 inside P
3
W through the flop.

A particularly simple choice for h that we will use in the following is

h(4H−D′−2E′) = Z
(H)
4

(

W
(3H−D′−2E′)
4 − Z

(H)
4 V

(H−D′−E′)
0 A(H−E′)

)

. (E.3)

For a generic linear polynomial A in W1, W2, and W3, the restriction of h to SGUT will be

an irreducible curve in the class 2h̃ − ẽ1 − ẽ2. Because h determines the 10 matter curve,

Σ10, this means that in all examples in this appendix we have

Σ10 = 2h̃− ẽ1 − ẽ2 . (E.4)

Let us now return to the issue of P . When we build our fibration we do not directly

specify P but rather the sections h, q, H, f3, and g5 which determine P via (3.6)

P (32H−8D′−21E′) = −3H(8H−2D′−5E′)
(

q(12H−3D′−8E′)
)2

− 3h4H−D′−2E′)f
(16H−4D′−11E′)
3 q(12H−3E′−8E′)

+ 2g
(24H−6D′−17E′)
5

(

h(4H−D′−2E′)
)2

.

(E.5)

It is therefore crucial to demonstrate that a particular choice of these sections can be made

to obtain P of a particular desired form (E.1). Our strategy for doing this will be to study

these sections in a series expansion in h. In particular, if we can demonstrate that the

expansion of P +3Hq2 +3hf3q begins at order h2 for a particular choice of P , then we can

always choose g5 = (2h)−2
(

P + 3Hq2 + 3hf3q
)

.

To proceed, then, we need to write the sections H, q, and f3 as

H(8H−2D′−5E′) = H
(8H−2D′−5E′)
0 + h(4H−D′−2E′)H

(4H−D′−3E′)
1 + · · ·

q(12H−3D′−8E′) = q
(12H−3D′−8E′)
0 + h(4H−D′−2E′)q

(8H−2D′−6E′)
1 + · · ·

f
(16H−4D′−11E′)
3 = f

(16H−4D′−11E′)
3,0 + · · · .

(E.6)
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We also need to expand our ansatz for P according to

P (32H−8D′−21E′) = P
(32H−8D′−21E′)
0 + h(4H−D′−2E′)P

(28H−7D′−19E′)
1 + · · · . (E.7)

where we explicitly write the bundles associated to various coefficients. Expanding P +

3Hq2 + 3hf3q, we find

P + 3Hq2 + 3hf3q =
(

P0 + 3H0q
2
0

)

+ h [P1 + 3q0 (2q1H0 + q0H1 + f3,0)] +O(h2) . (E.8)

For this to vanish at order h0 we need to choose H0 and q0 so that

P0 + 3H0q
2
0 = 0 . (E.9)

In other words, we must choose the factors of H0 and q0 to correspond to various factors of

P0. Because SO(12) points occur when P0 = q0 = 0 and E6 points occur when P0 = H0 = 0,

this essentially determines the structure of all matter curve intersections that we need for

the MSSM.

As for the h1 term in (E.8), we can make a choice of f3,0 that eliminates it provided

P1 = q0P̃1 . (E.10)

Given an ansatz for P , then, we can realize it in an explicit elliptic fibration provided

a choice for H0 and q0 exists that satisfies (E.9) and (E.10). We now turn to the study of

several examples.

E.1 Example 1: P factors into curves of g = 0

We first consider a “maximal” factorization of P into a product of factors Pi that each

meet SGUT in a curve class of genus 0. Because P is a section of 32H − 8D′ − 21E′, we

must include factors of W4, V0, and V1 to account for the −8D′ part. Since we used only

W4 and V0 in writing h above, it is simplest to use only these two sections for P as well.

We therefore seek to obtain

P
(32H−8D′−21E′)
Ex 1 =

(

Z
(H)
4

)3
F (5H−5E′)

p

8
∏

i=1

(

W
(3H−D′−2E′)
4 − Z

(H)
4 V

(H−D′−E′)
0 G

(H−E′)
i

)

.

(E.11)

This will correspond to splitting the 5 matter curve, which is specified by P , according to

Σ5 = 21h̃− 8(ẽ1 + ẽ2) → 8 × (2h̃− ẽ1 − ẽ2) + 5 × h̃ . (E.12)

To check the conditions (E.9) and (E.10), it is necessary to expand our particular

ansatz (E.11) as in (E.7). In the notation of (E.7) we find

P
(32H−8D′−21E′)
0 =

(

Z
(H)
4

)11 (

V
(H−D′−E′)
0

)8
F (5H−5E′)

p s8

(

G
(H−E′)
i −A(H−E′)

)

P
(28H−7D′−19E′)
1 =

(

Z
(H)
4

)9 (

V
(H−D′−E′)
0

)7
F (5H−5E′)

p s7

(

G
(H−E′)
i −A(H−E′)

)

.

(E.13)
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where sn(xi) denote Schur polynomials, which can be defined by

N
∏

i=1

(x+ xi) =
N

∑

n=0

xN−nsn(xi) . (E.14)

We can now satisfy both (E.9) and (E.10) while avoiding higher order zeros in H0 and q0
by choosing

F (5H−5E′)
p =

5
∏

i=1

(

G
(H−E′)
i −A(H−E′)

)

H
(8H−2D′−5E′)
0 = −

1

3

(

Z
(H)
4

)3 (

V
(H−D′−E′)
0

)2
8

∏

j=6

(

G
(H−E′)
j −A(H−E′)

)

q
(12H−3D′−8E′)
0 =

(

Z
(H)
4

)4 (

V
(H−D′−E′)
0

)3
F (5H−5E′)

p .

(E.15)

As alluded to above, these choices completely fix the structure of matter curves and

their intersections. To write the various factors of the Σ5 matter curve, it is helpful to split

the Gi into two groups. In particular, we define Ga = Gi for a = 1, . . . 5 and G̃µ = Gi+5

for µ = 6, . . . , 8. With this notation, we can write the Σ5 matter curves as

Matter Curve Equation Class in dP2

Σ5,a (a = 1, . . . , 5) W4 − Z4V0Ga 2h̃− ẽ1 − ẽ2

Σ5,A (A = 1, . . . , 3) W4 − Z4V0G̃A 2h̃− ẽ1 − ẽ2

Σ5,µ (µ = 1, . . . , 5) Gµ −A h̃

(E.16)

Each of these matter curves corresponds to the intersection of SGUT with a divisor in X̃. It

is possible that this intersection is further reducible inside SGUT and, indeed, as described

in the text this will be necessary to engineer Higgs fields.

The intersections of the 5 matter curves of (E.16) with the 10 matter curve have the

following generic structure

Intersecting Curves Singularity Type

Σ10 ∩ Σ5,a ∩ Σ5,µ (a = µ) SO(12)

Σ10 ∩ Σ5,A E6

(E.17)

Unfortunately, no single factor of Σ5 participates in both an SO(12) and an E6 point. This

is problematic because the only way to get both Hu and Hd without extra exotics is to

realize them on two components of a single reducible factor of P . The absence of a single

factor that participates in both types of Yukawa couplings means that we either have to

abandon this family of constructions or realize Hu and Hd on different factors, in which

case we will have to live with extra exotics.

E.2 Example 2: P factors into many curves of g = 0 and one with g = 1

In the previous example, we ran into trouble because P was “too factorized” in the sense

that it was broken into so many factors that no single one contained both an SO(12)
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and an E6 enhancement point. To rectify the situation, let us consider a slightly less

factorized form in which one of the factors corresponds to a curve class of genus 1. If we

succeed in writing such a family of solutions then we might hope to realize Hu and Hd on

a representative of this class in which the T 2 has degenerated to two individual P
1’s.

More specifically, we modify our previous ansatz for P to

P
(32H−8D′−21E′)
Ex 2 =

(

Z
(H)
4

)2
F̃ (4H−4E′)

p

7
∏

i=1

(

W
(3H−D′−2E′)
4 − Z

(H)
4 V

(H−D′−E′)
0 G

(H−E′)
i

)

×

×
[

Z
(H)
4 B(H−E′)

(

W
(3H−D′−2E′)
4 − Z

(H)
4 V

(H−D′−E′)
0 G(H−E′)

)

+ h(4H−D′−2E′)C(H−E′)
]

.

(E.18)

This corresponds to splitting Σ5 according to

Σ5 = 21h̃ − 8(ẽ1 + ẽ2) → (3h̃− ẽ1 − ẽ2) + 7 ×
(

2h̃− ẽ1 − ẽ2

)

+ 4 × h̃ . (E.19)

To check (E.9) and (E.10) we now expand (E.18) as in (E.7) with

P
(32H−8D′−21E′)
0 =

(

Z
(H)
4

)11 (

V
(H−D′−E′)
0

)8
F̃ (4H−4E′)

p B(H−E′)×

× s8

(

A(H−E′) −G
(H−E′)
i , A(H−E′) − G(H−E′)

)

P
(28H−7D′−19E′)
1 =

(

Z
(H)
4

)9 (

V
(H−D′−E′)
0

)7
F̃ (4H−4E′)

p ×

×
[

B(H−E′)s7

(

A(H−E′) −G
(H−E′)
i , A(H−E′) − G(H−E′)

)

+C(H−E′)s7

(

A(H−E′) −G
(H−E′)
i

)]

.

(E.20)

It is now easy to see that both (E.9) and (E.10) can be satisfied if we take

F̃ (4H−4E′)
p =

4
∏

i=1

(

G
(H−E′)
i −A(H−E′)

)

B(H−E′) = G
(H−E′)
5 −A(H−E′)

H
(8H−2D′−5E′)
0 = −

1

3

(

Z
(H)
4

)3 (

V
(H−D′−E′)
0

)2
×

×
(

G(H−E′) −A(H−E′)
)

7
∏

j=6

(

G
(H−E′)
j −A(H−E′)

)

q
(12H−3D′−8E′)
0 =

(

Z
(H)
4

)4 (

V
(H−D′−E′)
0

)3
F̃ (4H−4E′)

p B(H−E′) .

(E.21)

To describe the various matter curves and their intersections, it is again useful to break

apart the Gi into groups. This time, we write Ga = Gi for i = 1, . . . , 4 and G̃A = GA+5
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for A = 1, 2. With this notation, we can write the Σ5 matter curves as

Matter Curve Equation Class in dP2

Σ5,a (a = 1, . . . , 4) W4 − Z4V0Ga 2h̃− ẽ1 − ẽ2
Σ̃5,P1 W4 − Z4V0G5 2h̃− ẽ1 − ẽ2

Σ5,A (A = 1, 2) W4 − Z4V0G̃A 2h̃− ẽ1 − ẽ2

Σ5,µ (µ = 1, . . . , 4) G
(H−E′)
µ −A(H−E′) h̃

Σ̃5,T 2 Z4B(W4 − Z4V0G) + hC 3h̃− ẽ1 − ẽ2

(E.22)

The intersections of the 5 matter curves of (E.22) with the 10 matter curve have the

following generic structure

Intersecting Curves Singularity Type

Σ10 ∩ Σ5,a ∩ Σ5,µ (µ = a) SO(12)

Σ10 ∩ Σ̃5,P1 ∩ Σ̃5,T 2 SO(12)

Σ10 ∩ Σ5,A E6

Σ10 ∩ Σ̃5,T 2 E6

(E.23)

E.2.1 Candidate curves for MSSM matter

Quite nicely, Σ̃5,T 2 participates in both the SO(12) and E6 Yukawa couplings. Indeed, we

can get all of the desired Yukawa couplings if we engineer all three generations of 5M on

Σ̃5,P1 and both Hu and Hd on Σ̃5,T 2. To do the latter, we will need a nongeneric choice

of C, G5, and G so that Σ̃5,T 2 intersects SGUT in a reducible curve that is the sum of two

P
1’s, each of which exhibits a nontrivial restriction of the hypercharge flux [FY ] ∼ ẽ1 − ẽ2.

To close this subsection, let us demonstrate that with a particular choice of A(H−E′),

B(H−E′), C(H−E′), G(H−E), and G
(H−E′)
5 it is possible to arrange for all of the Yukawa

structures described in section 2. In particular, we want Σ̃5,T 2 to split in SGUT into two

components such that one meets Σ̃5,P1 and Σ10 in exactly one SO(12) point and the other

meets Σ10 in exactly one E6 point. We would then need to engineer Hd on the former and

Hu on the latter.

For Σ̃5,T 2, let us choose

A(H−E′) = W
(H′

E)
3

B(H−E′) = W
(H−E′)
2

G(H−E′) = W
(H−E′)
1

C(H−E′) = W
(H−E′)
1

G
(H−E′)
5 = W

(H−E′)
3 +W

(H−E′)
2 .

(E.24)

With these choices, the matter curves Σ10, Σ̃5,T 2, and Σ̃5,P1 are given by the equations

Curve Equation

Σ10 W4 −W3

Σ̃5,T 2 W2(W4 −W1) +W1(W4 −W3)

Σ5,P1 W4 −W3 −W2

(E.25)
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Note that Σ̃5,T 2 is precisely the curve that we study in section D.2. In particular, it is a

reducible curve in the class 3h̃− ẽ1 − ẽ2 which splits into components (h̃− ẽ2) and 2h̃− ẽ1.

Using the description of this curve in section D.2, it is easy to work out its intersections

with Σ10 and Σ̃5,P1

Intersecting Curves Intersection Point Singularity Type

Σ10 ∩ Σ̃
(2h̃−ẽ1)
5,T 2 ∩ Σ̃5,P1 [1, 0, 0, 0] SO(12)

Σ10 ∩ Σ̃
(2h̃−ẽ1)
5,T 2 [1, 1, 1, 1] E6

Σ10 ∩ Σ̃
(h̃−ẽ2)
5,T 2 [0, 1, 0, 0] E6

(E.26)

E.3 Example 3: P factors into many curves of genus 0 and one of genus 1

It is easy to write a different ansatz in which P splits into a sum of genus 0 factors and a

genus 1 factor.

P
(32H−8D′−21E′)
Ex 3 =

(

Z
(H)
4

)3
F (5H−5E′)

p

6
∏

i=1

(

W
(3H−D′−2E′)
4 − Z

(H)
4 V

(H−D′−E′)
0 G

(H−E′)
i

)

×

×
[(

W
(3H−D′−2E′)
4 − Z

(H)
4 V

(H−D′−E′)
0 G

(H−E′)
7

)

×

×
(

W
(3H−D′−2E′)
4 − Z

(H)
4 V

(H−D′−E′)
0 G

(H−E′)
8

)

+h(4H−D′−2E′)V
(H−D′−E′)
0 K(H−E′)

]

.

(E.27)

This corresponds to splitting P according to

P = (4h̃− 2ẽ1 − 2ẽ2) + 6 × (2h̃ − ẽ1 − ẽ2) + 5 × h̃ . (E.28)

To check (E.9) and (E.10), we expand (E.27) as in (E.7) with

P
(32H−8D′−21E′)
0 =

(

Z
(H)
4

)11 (

V
(H−D′−E′)
0

)8
F (5H−5E′)

p s8

(

A(H−E′) −G
(H−E′)
i

)

P
(28H−7D′−19E′)
1 =

(

Z
(H)
4

)9 (

V
(H−D′−E′)
0

)7

×

[

F (5H−5E′)
p s7

(

A(H−E′) −G
(H−E′)
i

)

+K(H−E′)
6

∏

i=1

(

A(H−E′) −G
(H−E)
i

)

]

(E.29)
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It is easy to see that both (E.9) and (E.10) can be satisfied if we take

F (5H−5E′)
p =

(

A(H−E′) −G
(H−E)
7

)

4
∏

i=1

(

A(H−E′) −G
(H−E)
i

)

K(H−E′) =
(

A(H−E′) −G
(H−E′)
7

)

H
(8H−2D′−5E′)
0 = −

1

3

(

Z
(H)
4

)3 (

V
(H−D′−E′)
0

)2
×

×
(

A(H−E′) −G
(H−E′)
8

)

6
∏

j=5

(

A(H−E′) −G
(H−E′)
i

)

q
(12H−3D′−8E′)
0 =

(

Z
(H)
4

)4 (

V
(H−D′−E′)
0

)3
F (5H−5E′)

p .

(E.30)

We can list the 5 matter curves as

Matter Curve Equation Class in dP2

Σ5,i (i = 1, . . . , 6) W4 − Z4V0Gi 2h̃− ẽ1 − ẽ2

Σ5,a (a = 1, . . . , 4) A−Ga h̃

Σ̃5,P1 A−G7 h̃

Σ̃5,T 2 (W4 − Z4V0G7)(W4 − Z4V0G8) + hV0(A−G7) 4h̃− 2(ẽ1 + ẽ2) .

(E.31)

The intersections of the 5 matter curves of (E.31) with the 10 matter curve have the

following generic structure

Intersecting Curves Singularity Type

Σ10 ∩ Σ5,i ∩ Σ5,a (i = a) SO(12)

Σ10 ∩ Σ̃5,P1 ∩ Σ̃5,T 2 SO(12)

Σ10 ∩ Σ5,i (i = 5, 6) E6

Σ10 ∩ Σ̃5,T 2 E6

(E.32)
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